465 results match your criteria: "Novartis Institutes for BioMedical Research CH-4002 Basel;[Affiliation]"

Drug permeability profiling using cell-free permeation tools: Overview and applications.

Eur J Pharm Sci

July 2018

Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49, Box 921, 3000 Leuven, Belgium. Electronic address:

Cell-free permeation systems are gaining interest in drug discovery and development as tools to obtain a reliable prediction of passive intestinal absorption without the disadvantages associated with cell- or tissue-based permeability profiling. Depending on the composition of the barrier, cell-free permeation systems are classified into two classes including (i) biomimetic barriers which are constructed from (phospho)lipids and (ii) non-biomimetic barriers containing dialysis membranes. This review provides an overview of the currently available cell-free permeation systems including Parallel Artificial Membrane Permeability Assay (PAMPA), Phospholipid Vesicle-based Permeation Assay (PVPA), Permeapad®, and artificial membrane based systems (e.

View Article and Find Full Text PDF

As part of a project to identify FGFR4 selective inhibitors, scaffold morphing of a 2-formylquinoline amide hit identified series of 2-formylpyridine ureas (2-FPUs) with improved potency and physicochemical properties. In particular, tetrahydronaphthyridine urea analogues with cellular activities below 30 nM have been identified. Consistent with the hypothesized reversible-covalent mechanism of inhibition, the 2-FPUs exhibited slow binding kinetics, and the aldehyde, as the putative electrophile, could be demonstrated to be a key structural element for activity.

View Article and Find Full Text PDF

Ritonavir is one of several ketoconazole alternatives used to evaluate strong CYP3A4 inhibition potential in clinical drug-drug interaction (DDI) studies. In this study, four physiologically based pharmacokinetic (PBPK) models of ritonavir as an in vivo time-dependent inhibitor of CYP3A4 were created and verified for oral doses of 20, 50, 100 and 200 mg using the fraction absorbed (F ) and oral clearance (CL ) values reported in the literature, because transporter and CYP enzyme reaction phenotyping data were not available. The models were used subsequently to predict and compare the magnitude of the AUC increase in nine reference DDI studies evaluating the effect of ritonavir at steady-state on midazolam (CYP3A4 substrate) exposure.

View Article and Find Full Text PDF

Aim: Although regulatory guidances require human metabolism information of drug candidates early in the development process, the human mass balance study (or hADME study), is performed relatively late. hADME studies typically involve the administration of a C-radiolabelled drug where biological samples are measured by conventional scintillation counting analysis. Another approach is the administration of therapeutic doses containing a C-microtracer followed by accelerator mass spectrometry (AMS) analysis, enabling hADME studies completion much earlier.

View Article and Find Full Text PDF

The design and synthesis of macrocyclic inhibitors of human rhinovirus 3C protease is described. A macrocyclic linkage of the P1 and P3 residues, and the subsequent structure-based optimization of the macrocycle conformation and size led to the identification of a potent biochemical inhibitor 10 with sub-micromolar antiviral activity.

View Article and Find Full Text PDF

Resistance to targeted tyrosine kinase inhibitors (TKI) remains a challenge for the treatment of myeloid leukemias. Following treatment with TKIs, the bone marrow microenvironment has been found to harbor a small pool of surviving leukemic CD34+ progenitor cells. The long-term survival of these leukemic cells has been attributed, at least in part, to the protective effects of bone marrow stroma.

View Article and Find Full Text PDF

Purpose: The purpose of the study is to investigate the enzyme(s) responsible for siponimod metabolism and to predict the inhibitory effects of fluconazole as well as the impact of cytochrome P450 (CYP) 2C9 genetic polymorphism on siponimod pharmacokinetics (PK) and metabolism.

Methods: In vitro metabolism studies were conducted using human liver microsomes (HLM), and enzyme phenotyping was assessed using a correlation analysis method. SimCYP, a physiologically based PK model, was developed and used to predict the effects of fluconazole and CYP2C9 genetic polymorphism on siponimod metabolism.

View Article and Find Full Text PDF

Background: This study aims at characterizing the in vitro metabolism of cryptolepine using human and rat hepatocytes, identifying metabolites in rat plasma and urine after a single cryptolepine dose, and evaluating the single-dose oral and intravenous pharmacokinetics of cryptolepine in male Sprague Dawley (SD) rats.

Methods: The in vitro metabolic profiles of cryptolepine were determined by LC-MS/MS following incubation with rat and human hepatocytes. The in vivo metabolic profile of cryptolepine was determined in plasma and urine samples from Sprague Dawley rats following single-dose oral administration of cryptolepine.

View Article and Find Full Text PDF

PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood.

View Article and Find Full Text PDF

A complex conformational energy landscape determines G-protein-coupled receptor (GPCR) signalling via intracellular binding partners (IBPs), e.g., G and β-arrestin.

View Article and Find Full Text PDF

Generating Modeling Data From Repeat-Dose Toxicity Reports.

Toxicol Sci

March 2018

Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, 08003 Barcelona, Spain.

Over the past decades, pharmaceutical companies have conducted a large number of high-quality in vivo repeat-dose toxicity (RDT) studies for regulatory purposes. As part of the eTOX project, a high number of these studies have been compiled and integrated into a database. This valuable resource can be queried directly, but it can be further exploited to build predictive models.

View Article and Find Full Text PDF

As a result of our persistent efforts to discover novel inhibitors of the p53-MDM2 protein-protein interaction useful for the treatment of cancer, the potent and selective MDM2 inhibitors NVP-CGM097 and NVP-HDM201 with excellent in vitro and in vivo profile were selected as clinical candidates and are currently in phase 1 clinical development. This short review article provides a summary of the program history, the applied pharmacophore model and the discovery story of these novel p53-MDM2 inhibitor investigational drugs.

View Article and Find Full Text PDF

Aims: Progressive aortic stiffening eventually leads to left ventricular (LV) hypertrophy and heart failure if left untreated. Anti-hypertensive agents have been shown to reverse this to some extent. The effects of sacubitril/valsartan (LCZ696), a dual-action angiotensin receptor blocker (ARB), and neprilysin inhibitor, on arterial stiffness and LV remodelling have not been investigated.

View Article and Find Full Text PDF

Legacy data sharing to improve drug safety assessment: the eTOX project.

Nat Rev Drug Discov

December 2017

Lead Molecular Design S.L., 08172 Sant Cugat del Vallès, Spain.

The sharing of legacy preclinical safety data among pharmaceutical companies and its integration with other information sources offers unprecedented opportunities to improve the early assessment of drug safety. Here, we discuss the experience of the eTOX project, which was established through the Innovative Medicines Initiative to explore this possibility.

View Article and Find Full Text PDF

The heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited.

View Article and Find Full Text PDF

Discovery of CDZ173 (Leniolisib), Representing a Structurally Novel Class of PI3K Delta-Selective Inhibitors.

ACS Med Chem Lett

September 2017

Global Discovery Chemistry, PK Sciences, Chemical Biology and Therapeutics, and Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland.

The predominant expression of phosphoinositide 3-kinase δ (PI3Kδ) in leukocytes and its critical role in B and T cell functions led to the hypothesis that selective inhibitors of this isoform would have potential as therapeutics for the treatment of allergic and inflammatory disease. Targeting specifically PI3Kδ should avoid potential side effects associated with the ubiquitously expressed PI3Kα and β isoforms. We disclose how morphing the heterocyclic core of previously discovered 4,6-diaryl quinazolines to a significantly less lipophilic 5,6,7,8-tetrahydropyrido[4,3-]pyrimidine, followed by replacement of one of the phenyl groups with a pyrrolidine-3-amine, led to a compound series with an optimal on-target profile and good ADME properties.

View Article and Find Full Text PDF

Allogeneic haemopoietic stem cell transplantation (HSCT) is increasingly used to treat haematological malignant diseases via the graft-versus-leukaemia (GvL) or graft-versus-tumour effects. Although improvements in infectious disease prophylaxis, immunosuppressive treatments, supportive care, and molecular based tissue typing have contributed to enhanced outcomes, acute graft-versus-host disease and other transplant related complications still contribute to high mortality and significantly limit the more widespread use of HSCT. Sphingosine 1-phosphate (S1P) is a zwitterionic lysophospholipid that has been implicated as a crucial signaling regulator in many physiological and pathophysiological processes including multiple cell types such as macrophages, dendritic cells, T cells, T regulatory cells and endothelial cells.

View Article and Find Full Text PDF

Development of a cyclosporin A derivative with excellent anti-hepatitis C virus potency.

Bioorg Med Chem

February 2018

Chemical and Analytical Development, CH-4002 Basel, Switzerland. Electronic address:

Synthetic modification of cyclosporin A at P3-P4 positions led to the discovery of NIM258, a next generation cyclophilin inhibitor with excellent anti-hepatitis C virus potency, with decreased transporter inhibition, and pharmacokinetics suitable for coadministration with other drugs. Herein is disclosed the evolution of the synthetic strategy to from the original medicinal chemistry route, designed for late diversification, to a convergent and robust development synthesis. The chiral centers in the P4 fragment were constructed by an asymmetric chelated Claisen rearrangement in the presence of quinidine as the chiral ligand.

View Article and Find Full Text PDF

IL-17A and IL-17F are prominent members of the IL-17 family of cytokines that regulates both innate and adaptive immunity. IL-17A has been implicated in chronic inflammatory and autoimmune diseases, and anti-IL-17A antibodies have shown remarkable clinical efficacy in psoriasis and psoriatic arthritis patients. IL-17A and IL-17F are homodimeric cytokines that can also form the IL-17A/F heterodimer whose precise role in health and disease remains elusive.

View Article and Find Full Text PDF

It is widely understood that QSAR models greatly improve if more data are used. However, irrespective of model quality, once chemical structures diverge too far from the initial data set, the predictive performance of a model degrades quickly. To increase the applicability domain we need to increase the diversity of the training set.

View Article and Find Full Text PDF

GPR4, a G-protein coupled receptor, functions as a proton sensor being activated by extracellular acidic pH and has been implicated in playing a key role in acidosis associated with a variety of inflammatory conditions. An orally active GPR4 antagonist 39c was developed, starting from a high throughput screening hit 1. The compound shows potent cellular activity and is efficacious in animal models of angiogenesis, inflammation and pain.

View Article and Find Full Text PDF

A diverse range of selective FGFR4 inhibitor hit series were identified using unbiased screening approaches and by the modification of known kinase inhibitor scaffolds. In each case the origin of the selectivity was consistent with an interaction with a poorly conserved cysteine residue within the middle-hinge region of the kinase domain of FGFR4, at position 552. Targeting this region identified a non-covalent diaminopyrimidine series differentiating by size, an irreversible-covalent inhibitor in which Cys552 undergoes an SNAr reaction with a 2-chloropyridine, and a reversible-covalent inhibitor series in which Cys552 forms a hemithioacetal adduct with a 2-formyl naphthalene.

View Article and Find Full Text PDF

RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify.

View Article and Find Full Text PDF