3 results match your criteria: "North Dakota Sate University[Affiliation]"
Biofouling
May 2007
Center for Nanoscale Science and Engineering, North Dakota Sate University, Fargo, North Dakota 58102, USA.
A high-throughput bacterial biofilm retention screening method has been augmented to facilitate the rapid analysis and down-selection of fouling-release coatings for identification of promising candidates. Coatings were cast in modified 24-well tissue culture plates and inoculated with the marine bacterium Cytophaga lytica for attachment and biofilm growth. Biofilms retained after rinsing with deionised water were dried at ambient laboratory conditions.
View Article and Find Full Text PDFBiofouling
May 2007
Center for Nanoscale Science and Engineering, North Dakota Sate University, 1805 NDSU Research Park Drive, Fargo, North Dakota 58102, USA.
The authors recently reported on the development of a novel multiwell plate screening method for the high-throughput assessment of bacterial biofilm retention on surfaces. Two series of biocide containing coatings were prepared to assess the ability of the developed assay to adequately discern differences in antifouling performance: i) a commercially available poly(methyl methacrylate) (PMMA) and silicone elastomer (DC) physically blended with an organic antifouling biocide Sea-Nine 211 (SN211) (4,5-dichloro-2-n-octyl-3(2H)-isothiazolone), and ii) a silanol-terminated polydimethylsiloxane (PDMS-OH) reacted with an alkoxy silane-modified polyethylenimine containing bound ammonium salt groups (PEI-AmCl). Three marine bacteria were utilised to evaluate the SN211 blended coatings (Pseudoalteromonas atlantica ATCC 19262, Cobetia marina ATCC 25374, Halomonas pacifica ATCC 27122) and the marine bacterium Cytophaga lytica was utilised to evaluate the PEI-AmCl/PDMS-OH coatings.
View Article and Find Full Text PDFJ Comb Chem
August 2006
Center for Nanoscale Science and Engineering, North Dakota Sate University, 1805 NDSU Research Park Drive, Fargo, North Dakota 58102, USA.
Combinatorial, high-throughput capabilities have been established to aid in the rapid development of new and effective antifouling marine coatings for naval applications. A biological screening process involving marine bacteria was developed that allows for rapid and effective quantification of bacterial biofilm growth and retention on large numbers of coating surfaces in parallel. The screening process involves (1) multiwell plate modifications for coating deposition, (2) deposition of combinatorial coating libraries via an automated liquid dispensing robot, (3) coating thickness measurements of cured coatings, (4) preconditioning of coatings via immersion in deionized water, (5) bacterial incubation, (6) plate processing, and (7) data analysis for identification of promising candidates.
View Article and Find Full Text PDF