4,073 results match your criteria: "Ningbo Institute of Materials Technology & Engineering (NIMTE)[Affiliation]"
Small
January 2025
Ningbo Institute of Materials Technology and Engineering, CAS, Chinese Academy of Science, Ningbo, 315201, China.
Glutathione serves as a common biomarkers in tumor diagnosis and treatment. The levels of its intracellular concentration permit detailed investigation of the tumor microenvironment. However, low polarization and weak Raman scattering cross-section make direct and indirect Raman detection challenging.
View Article and Find Full Text PDFSmall
January 2025
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Construction of core-shell structured electrocatalysts with a thin noble metal shell is an effective strategy for lowering the usage of the noble metal and improving electrocatalytic properties because of the structure-induced geometric and electronic effects. Here, the synthesis of a novel core-shell structured nanocatalyst consisting of a thin amorphous Pd shell and a crystalline PdCu core and its significantly improved electrocatalytic properties for both formic acid oxidation and oxygen reduction reactions are shown. The electrocatalyst exhibits 4.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315211, China.
Obtaining reliable dynamic mechanical properties through experiments is essential for developing and validating constitutive models in material selection and structural design. This study introduces a dynamic tensile method using a modified M-type specimen loaded by a split Hopkinson pressure bar (SHPB). A closed M-type specimen was thus employed.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK.
The evaluation of the mechanical performance of fly ash-recycled mortar (FARM) is a necessary condition to ensure the efficient utilization of recycled fine aggregates. This article describes the design of nine mix proportions of FARMs with a low water/cement ratio and screens six mix proportions with reasonable flowability. The compressive strengths of FARMs were tested, and the influence of the water/cement ratio (/) and age on the compressive strength was analyzed.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME).
View Article and Find Full Text PDFAnal Chem
January 2025
Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO nanosheets was developed for multimodal imaging of tumor cells.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
Herein, we report a Ni-catalyzed cross-electrophile coupling of aryl/vinyl halides with benzothiazolium salts derived from alcohols. Our findings demonstrate that primary alkyl benzothiazolium salts serve as effective C(sp)-O substrates, facilitating coupling with aryl and vinyl halides. This method not only enables the formal functionalization of primary alcohols but also provides experimental support for previously established sequential alcohol halogenation and Ni-catalyzed reductive coupling platforms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Ningbo Institute of Materials Technology and Engineering CAS: Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering, Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, CHINA.
High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy to achieve high-temperature liquid-phase phosphorescence (HTLP). The supramolecular assembly of multivalent modules leads to extremely robust hydrogen-bonding networks, which firmly immobilize the organic phosphors and protect triplet excitons from annihilation in high-temperature polar media, resulting in excellent HTLP emission.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350116, China.
Colloidal quantum dot (CQD) near-infrared (NIR) upconversion devices (UCDs) can directly convert low-energy NIR light into higher energy visible light without the need for additional integrated circuits, which is advantageous for NIR sensing and imaging. However, the state-of-the-art CQD NIR upconverters still face challenges, including high turn-on voltage (), low photon-to-photon (p-p) upconversion efficiency, and low current on/off ratio, primarily due to inherent limitations in the device structure and operating mechanisms. In this work, we developed a CQD NIR UCD based on a hole-only injection mechanism.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, China.
The two-dimensional (2D) "sandwich" structure composed of a cation plane located between two anion planes, such as anion-rich CrI, VS, VSe, and MnSe, possesses exotic magnetic and electronic structural properties and is expected to be a typical base for next-generation microelectronic, magnetic, and spintronic devices. However, only a few 2D anion-rich "sandwich" materials have been experimentally discovered and fabricated, as they are vastly limited by their conventional stoichiometric ratios and structural stability under ambient conditions. Here, we report a 2D anion-rich NaCl crystal with sandwiched structure confined within graphene oxide membranes with positive surface potential.
View Article and Find Full Text PDFSci Rep
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Zhejiang, 315201, Ningbo, China.
In order to improve the power and energy of water-jet-guided laser, this paper introduces a double beam water-jet-guided laser (DWJL) technology. Based spatially polarized light combination and temporal phase modulation, two lasers are effectively coupled into a water jet with diameter of 100 μm. The maximum output peak power reaches 100 kW and the maximum pulse energy is 4.
View Article and Find Full Text PDFSci Adv
January 2025
Neural Engineering Centre, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Neuromuscular abnormality is the leading cause of disability in adults. Understanding the complex interplay between muscle structure and function is crucial for effective treatment and rehabilitation. However, the substantial deformation of muscles during movement (up to 40%) poses challenges for accurate assessment.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China.
Owing to the predominant merit of tunable bandgaps, tin-lead mixed perovskites have shown great potentials in realizing near-infrared optoelectronics and are receiving increasing attention. However, despite the merit, there is still a lack of fundamental understanding of the bandgap variation as a function of Sn/Pb ratio, mainly because the films are easy to segregate in terms of both composition and phase. Here, we report a fully stoichiometric synthesis of monocrystalline FAPbSnI nanocrystals as well as their atomic-scale imaging.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Ningbo Institute of Technology, Beihang University, Ningbo 315800, China.
The manufacturing precision of electro-hydraulic servo valve sleeves is critical to the performance and longevity of the valves. To ensure the service life of these valves, the valve sleeve is typically made from high-hardness martensitic stainless steel, which is considered a hard-to-cut material. Current honing methods often suffer from inefficiency and instability.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Laboratory of Optoelectronic and Information Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Tin-based perovskite has emerged as an excellent luminescent material due to its non-toxicity and narrow bandgap compared to lead-based perovskite. However, its tin ions are easily oxidized by oxygen, which leads to increased vacancy defects and poor crystallinity, presenting a significant challenge in obtaining high-quality perovskite films. In this context, we introduced an approach by synergistically adding SnF and tin powder into the precursor solution to enhance the antioxidation of Sn ions.
View Article and Find Full Text PDFNat Chem
January 2025
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
sp-carbon-linked covalent organic frameworks (spc-COFs) are crystalline porous polymers with repeat organic units linked by sp carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline spc-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers.
View Article and Find Full Text PDFNat Commun
January 2025
Antivortices have potential applications in future nano-functional devices, yet the formation of isolated antivortices traditionally requires nanoscale dimensions and near-zero magnetocrystalline anisotropy, limiting their broader application. Here, we propose an approach to forming antivortices in multiferroic ε-FeO with the coalescence of misaligned grains. By leveraging misaligned crystal domains, the large magnetocrystalline anisotropy energy is counterbalanced, thereby stabilizing the ground state of the antivortex.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China.
Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of HO and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of HO on VOC oxidation.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Org Biomol Chem
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
We report the first example of photocatalytic acceptorless dehydrogenation using cationic Eosin Y as a bifunctional photocatalyst, without metal catalysts or HAT reagents. Under Bayesian optimized conditions, a wide range of flavones were synthesized in moderate to excellent yields, many of which were reported with biological activities. Mechanistic studies suggest that flavones likely form through two HAT processes, with hydrogen release occurring photoredox.
View Article and Find Full Text PDFMater Horiz
January 2025
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Adv Healthc Mater
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
Urinary catheters serve as critical medical devices in clinical practice. However, the currently used urinary catheters lack efficient antibacterial and lubricating properties, often leading to discomfort with patients and even severe urinary infections. Herein, a new strategy of supramolecular assembly and disassembly of chitosan (Cs) is developed that enables efficient antibacterial lubricous and biodegradable hydrogel urinary catheters.
View Article and Find Full Text PDF