133 results match your criteria: "New Uzbekistan University[Affiliation]"

Article Synopsis
  • The study investigates the degradation of ciprofloxacin (CIP) using a photocatalyst made from CoFeO@3D-TiO and graphene aerogel, achieving complete removal under specific conditions within 60 minutes while showing high reusability.
  • Intermediate products from the degradation process were found to be non-toxic to E. coli, and total organic carbon (TOC) analysis showed 86% mineralization of CIP, indicating successful transformation of non-biological sewage to biodegradable effluent.
  • The research emphasizes the effectiveness of photocatalysis over simple adsorption with a significantly faster reaction rate, showcasing the potential environmental benefits of using the synthesized photocatalyst under visible light.
View Article and Find Full Text PDF

Precise estimation of rock petrophysical parameters are seriously important for the reliable computation of hydrocarbon in place in the underground formations. Therefore, accurately estimation rock saturation exponent is necessary in this regard. In this communication, we aim to develop intelligent data-driven models of decision tree, random forest, ensemble learning, adaptive boosting, support vector machine and multilayer perceptron artificial neural network to predict rock saturation exponent parameter in terms of rock absolute permeability, porosity, resistivity index, true resistivity, and water saturation based on acquired 1041 field data.

View Article and Find Full Text PDF

This study presents an in-depth analysis and evaluation of the performance of a standard 200 W solar cell, focusing on the energy and exergy aspects. A significant research gap exists in the comprehensive integration of numerical models with advanced machine-learning approaches, specifically emotional artificial neural networks (EANN), to simulate and optimize the electrical characteristics and efficiency of solar panels. To address this gap, a numerical model alongside a novel EANN was employed to simulate the system's electrical characteristics, including open-circuit voltage, short-circuit current, system resistances, maximum power point characteristics, and characteristic curves.

View Article and Find Full Text PDF

Effect of Substituents on Chitosan-Derived Sustainable Corrosion Inhibitors: Experimental and Computational Studies of Inhibition and Adsorption Performance.

Langmuir

December 2024

Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco.

This work involves the synthesis of two chitosan derivatives by reacting chitosan, extracted from shrimp shells in eastern Morocco, with 2-nitrobenzaldehyde via a Schiff base reaction. An amino derivative of chitosan was then produced by reducing the imine group created by sodium borohydride. We investigated the molecular weight (), crystallinity index (), and degree of deacetylation () of the isolated chitosan, among other characteristic features.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have emerged as one of the most capable and interesting materials in recent decades and have extraordinary mechanical properties (MPs) and resourceful applications in bioengineering and medicine. Equilibrium molecular dynamics simulations have been performed to investigate the structural and MPs of armchair, chiral, and semiconducting and metallic zigzag single-walled CNTs (SWCNTs) under varying temperature (K) and compressive and tensile strains ±γ (%) with reactive bond-order potential. New results elaborate on the buckling and deformation mechanisms of the SWCNTs through deep analyses of density profiles, radial distribution functions, structural visualizations, and stress-strain interactions.

View Article and Find Full Text PDF

Mitigation of the environment from hazardous pesticides is clamant for all living things. The behavior of the fungicide Fuberidazole was investigated toward biodegradation. Biotransformation experiments were conducted by bacterial strains isolated from soils including, (XC), and (PS), and fungal strains including, (AF), (AN) and (PC).

View Article and Find Full Text PDF

To fully comprehend each pesticide's behavior and interactions with soil and the environment, a thorough and nuanced analysis of each one is thought necessary. In this study, 10 randomly selected heterogeneous soil samples, each with distinct characteristics, were subjected to sorption trials as well as disintegration tests using biodegradation, hydrolysis, and photolysis. For sorption tests, the batch equilibrium approach was used, which revealed a dependence on the soils' physicochemical characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • * The isolates were found to have beneficial traits for plants, such as producing growth-promoting compounds and enzymes, and showed antagonistic activity against certain fungal pathogens.
  • * Selected isolates, specifically GU1, GU6, GU7, and GU18, not only enhanced growth in licorice plants but also effectively colonized their roots, suggesting their potential use as bioinoculants for agricultural purposes.
View Article and Find Full Text PDF

Correction for 'Broadening spectral responses and achieving environmental stability in SnS/Ag-NPs/HfO flexible phototransistors' by Muhammad Farooq Khan , , 2024, , 3622-3630, https://doi.org/10.1039/D3NR04626E.

View Article and Find Full Text PDF

Nonmelanoma skin cancer (NMSC) represents the most prevalent form of skin cancer globally, with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being the most common types. The search for effective chemopreventive and therapeutic agents has led to the exploration of natural compounds, among which resveratrol (RES), a polyphenolic phytoalexin found in grapes, berries, peanuts, and red wine, has garnered significant attention. This comprehensive review aims to elucidate the effects of RES on NMSC, focusing on its mechanisms of action, efficacy in preclinical studies, and potential as a chemopreventive and therapeutic agent.

View Article and Find Full Text PDF

Ajuga turkestanica preparations are used as anti-aging cosmeceuticals and for medicinal purposes. Herein we describe the characterization and quantification of its metabolites in different organs using UHPLC-MS and NMR spectroscopy. A total of 51 compounds belonging to various phytochemical classes (11 flavonoids, 10 ecdysteroids, 9 diterpenes, 6 fatty acids, 5 iridoids, 3 phenylpropanoids, 3 sugars, 2 phenolics, 1 coumarin, 1 triterpene) were annotated and tentatively identified by UHPLC-ESI-QqTOF-MS/MS of methanolic extracts obtained separately from the organs.

View Article and Find Full Text PDF

In this study, we have prepared a novel bis-Schiff-base copper(ii) complex by modifying FeO with acetylacetone functionalities and subsequently forming a Schiff base with 2-picolylamine and CuCl through a template method. Immobilization of 2,4-pentanedione and its reaction with 2-picolylamine enabled the synthesis of 1,3-diketimines (HNacNac) as an anionic ligand. This unique design resulted in a tetradentate N coordination sphere for copper(ii) ion complexation.

View Article and Find Full Text PDF

Towards the intelligent transportation systems, Location Based Service (LBS) are widely engaged in Vehicular Ad Hoc Networks (VANETs) that are becoming as significant application that change the human driving experience in today's world. LBS systems facilitate the users with intelligent services by collecting an accurate location information. Due to the frequent exchange rate of the location information in an open environment, VANETs are inherently susceptible to privacy and security attacks.

View Article and Find Full Text PDF

Mathematical modeling of infectious diseases and the impact of vaccination strategies.

Math Biosci Eng

September 2024

Department of Mathematics, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Ave 53, Astana 010000, Kazakhstan.

Mathematical modeling plays a crucial role in understanding and combating infectious diseases, offering predictive insights into disease spread and the impact of vaccination strategies. This paper explored the significance of mathematical modeling in epidemic control efforts, focusing on the interplay between vaccination strategies, disease transmission rates, and population immunity. To facilitate meaningful comparisons of vaccination strategies, we maintained a consistent framework by fixing the vaccination capacity to vary from 10 to 100% of the total population.

View Article and Find Full Text PDF

Tuberculosis (TB) is a highly contagious disease that remains a global concern affecting numerous countries. Kazakhstan has been facing considerable challenges in TB prevention and treatment for decades. This study aims to understand TB transmission dynamics by developing and comparing statistical and deterministic models: Seasonal Autoregressive Integrated Moving Average (SARIMA) and the basic Susceptible-Infected-Recovered (SIR).

View Article and Find Full Text PDF

Context: This study addresses the development of sustainable pyridinium ionic liquids (ILs) because of their potential applications in agriculture and pharmaceuticals. Pyridinium-based ILs are known for their low melting points, high thermal stability, and moderate solvation properties. We synthesized three novel pyridinium-based ILs: 1-(2-(isopentyloxy)-2-oxoethyl)pyridin-1-ium chloride, 1-(2-(hexyloxy)-2-oxoethyl)pyridin-1-ium chloride, and 1-(2-(benzyloxy)-2-oxoethyl)pyridin-1-ium chloride.

View Article and Find Full Text PDF

The van der Waals (vdW) heterostructures based on two-dimensional (2D) semiconducting materials have been thoroughly investigated with regard to practical applications. Recent studies on 2D materials have reignited attraction in the p-n junction, with promising potential for applications in both electronics and optoelectronics. 2D materials provide exceptional band structural diversity in p-n junction devices, which is rare in regular bulk semiconductors.

View Article and Find Full Text PDF
Article Synopsis
  • Certain species, including strain Chen 4, play key roles as pathogens affecting plants and animals.
  • A comprehensive genome sequencing of strain Chen 4 was performed using advanced sequencing technology, resulting in a genome size of 41.25 Mb and an assembly into 150 contigs.
  • The study identified over 14,000 protein-encoding genes, with a significant number being putative effectors, enhancing resources for research on evolution and plant-host interactions.
View Article and Find Full Text PDF

The geometry, electronic structure, and adsorption properties of halogen molecule X(X = F, Cl) on arsenene were investigated using first-principles calculations. The adsorption of molecules was considered at various sites and in various orientations on the pristine arsenene (p-As) surface. Both molecules show chemisorption and the crystal orbital Hamiltonian population (COHP) analysis reveals the formation of strong X-As bonds.

View Article and Find Full Text PDF

The current work is the first ever report on the functionalization of CoO nanoparticles (NPs) using the bio active constituents of Abies pindrow Royle (A.pindrow) leaves. An efficient phytochemical extraction method was determined by comparing different extraction strategies for extracting the biologically active compounds of A.

View Article and Find Full Text PDF

This study investigates the impact of cooling methods on the electrical efficiency of photovoltaic panels (PVs). The efficiency of four cooling techniques is experimentally analyzed. The most effective approach is identified as water-spray cooling on the front surface of PVs, which increases efficiency by 3.

View Article and Find Full Text PDF

Keeping recruitment of green and cost-effective solutions for environmental challenges in view, the current work was designed to solve the problems related to metal corrosion in the aqueous phases of crude oil in chemical industries. Green materials can play an important role in protecting metals from this corrosion. Hence, the green anti-corrosion material based upon gossypol derivate is suggested to solve the above problems.

View Article and Find Full Text PDF
Article Synopsis
  • * Characterization techniques (BET, FTIR, SEM, etc.) confirmed that the catalysts had mesoporous structures and acidic sites, indicating they were effective for catalysis.
  • * Results showed that the manganese-based catalyst (NH-MK10-Bpy-Mn) was more effective than the zinc-based one, achieving a high conversion rate in the desired reaction, and both catalysts were reusable, highlighting their potential in industrial applications.
View Article and Find Full Text PDF

Objective: Cardiovascular diseases (CVDs) are the most common cause of death worldwide. Diet plays an important role among many risk factors for CVDs. The present study aimed to investigate the relationship between carbohydrate quality index (CQI) and conventional risk factors of CVDs in Iranian adults.

View Article and Find Full Text PDF

In the modern era, the major problem is solving energy production and consumption. For this purpose, perovskite materials meet these issues and fulfill energy production at a low cost. Density functional theory and the Cambridge Serial Total Energy Package (CASTEP) are used to examine the characteristics of the cubic inorganic perovskites RPbBr (R = Cs, Hg, and Ga).

View Article and Find Full Text PDF