4 results match your criteria: "Neuroscience Institute of the National Research Council[Affiliation]"

Visual system plasticity, the capability of visual connections to modify their structure and function in response to experience, is an essential property underlying the maturation of visual functions during development, behavioral flexibility in response to subtle environmental changes, and adaptive repair in conditions of disease or trauma [...

View Article and Find Full Text PDF

Several experimental procedures are currently used to investigate the impact of the environment on brain plasticity under physiological and pathological conditions. The available methodologies are aimed at obtaining global or specific reductions or intensifications of the stimuli, with initial standardization in animal models being paralleled by translational applications to humans. More procedures can be combined together or applied in series to obtain powerful experimental paradigms, and the choice of a given setting should take into account the specific genetic background, age, and phenotypic vulnerabilities of the target subjects.

View Article and Find Full Text PDF

Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted.

View Article and Find Full Text PDF

Mitochondrial Ca(2+) homeostasis is an important component of the calcium-mediated cellular response to extracellular stimuli. It controls key organelle functions, such as aerobic metabolism and the induction of apoptotic cell death, and shapes the spatiotemporal pattern of the cytosolic [Ca(2+)] increase. We here summarize both the main roles of Ca(2+) signals within mitochondria and the emerging molecular information that is starting to unravel the composition of the signaling apparatus and reveal potential pharmacological targets in this process of utmost pathophysiological relevance.

View Article and Find Full Text PDF