4 results match your criteria: "Netherlands. Electronic address: m.bonte@maastrichtuniversity.nl.[Affiliation]"

Unraveling individual differences in learning potential: A dynamic framework for the case of reading development.

Dev Cogn Neurosci

April 2024

Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland.

Children show an enormous capacity to learn during development, but with large individual differences in the time course and trajectory of learning and the achieved skill level. Recent progress in developmental sciences has shown the contribution of a multitude of factors including genetic variation, brain plasticity, socio-cultural context and learning experiences to individual development. These factors interact in a complex manner, producing children's idiosyncratic and heterogeneous learning paths.

View Article and Find Full Text PDF

Altered patterns of directed connectivity within the reading network of dyslexic children and their relation to reading dysfluency.

Dev Cogn Neurosci

February 2017

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229EV Maastricht, Netherlands; Maastricht Brain Imaging Center (M-BIC), Oxfordlaan 55, 6229EV Maastricht, Netherlands. Electronic address:

Reading is a complex cognitive skill subserved by a distributed network of visual and language-related regions. Disruptions of connectivity within this network have been associated with developmental dyslexia but their relation to individual differences in the severity of reading problems remains unclear. Here we investigate whether dysfunctional connectivity scales with the level of reading dysfluency by examining EEG recordings during visual word and false font processing in 9-year-old typically reading children (TR) and two groups of dyslexic children: severely dysfluent (SDD) and moderately dysfluent (MDD) dyslexics.

View Article and Find Full Text PDF

Developmental refinement of cortical systems for speech and voice processing.

Neuroimage

March 2016

Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.

Development typically leads to optimized and adaptive neural mechanisms for the processing of voice and speech. In this fMRI study we investigated how this adaptive processing reaches its mature efficiency by examining the effects of task, age and phonological skills on cortical responses to voice and speech in children (8-9years), adolescents (14-15years) and adults. Participants listened to vowels (/a/, /i/, /u/) spoken by different speakers (boy, girl, man) and performed delayed-match-to-sample tasks on vowel and speaker identity.

View Article and Find Full Text PDF

Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex.

Neuroimage

December 2013

Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. Electronic address:

We study the developmental trajectory of morphology and function of the superior temporal cortex (STC) in children (8-9 years), adolescents (14-15 years) and young adults. We analyze cortical surface landmarks and functional MRI (fMRI) responses to voices, other natural categories and tones and examine how hemispheric asymmetry and inter-subject variability change across age. Our results show stable morphological asymmetries across age groups, including a larger left planum temporale and a deeper right superior temporal sulcus.

View Article and Find Full Text PDF