2 results match your criteria: "Netherlands f.ye@liacs.leidenuniv.nl.[Affiliation]"

We present IOHexperimenter, the experimentation module of the IOHprofiler project. IOHexperimenter aims at providing an easy-to-use and customizable toolbox for benchmarking iterative optimization heuristics such as local search, evolutionary and genetic algorithms, and Bayesian optimization techniques. IOHexperimenter can be used as a stand-alone tool or as part of a benchmarking pipeline that uses other modules of the IOHprofiler environment.

View Article and Find Full Text PDF

Thirty years, 1993-2023, is a huge time frame in science. We address some major developments in the field of evolutionary algorithms, with applications in parameter optimization, over these 30 years. These include the covariance matrix adaptation evolution strategy and some fast-growing fields such as multimodal optimization, surrogate-assisted optimization, multiobjective optimization, and automated algorithm design.

View Article and Find Full Text PDF