710 results match your criteria: "Netherlands Institute for Brain Research.[Affiliation]"

The daily rhythm of melatonin synthesis in the rat pineal gland is controlled by the central biological clock, located in the suprachiasmatic nucleus (SCN), via a multi-synaptic pathway involving, successively, neurones of the paraventricular nucleus of the hypothalamus (PVN), sympathetic preganglionic neurones of the intermediolateral cell column of the spinal cord, and norepinephrine containing sympathetic neurones of the superior cervical ganglion. Recently, we showed that, in the rat, the SCN uses a combination of daytime inhibitory and nighttime stimulatory signals toward the PVN-pineal pathway in order to control the daily rhythm of melatonin synthesis, GABA being responsible for the daytime inhibitory message and glutamate for the nighttime stimulation. The present study was initiated to further check this concept, and to investigate the involvement of the inhibitory SCN output in the early morning circadian decline of melatonin release, with the hypothesis that, at dawn, the increased release of GABA onto pre-autonomic PVN neurones results in a diminished norepinephrine stimulation of the pineal, and ultimately an arrest of melatonin release.

View Article and Find Full Text PDF

The present experiment investigated the potentially ameliorative effect of exposure to light in the dark phase of an 12:12 h daily lighting schedule (12L/12D cycle) on behavioral despair, an animal model of depression based on two forced swim tests separated by 24 h. Experimental groups of female Wistar rats were maintained on the 12L/12D cycle except for a single exposure to 12 h of light treatment in the dark phase of the 12L/12D cycle. Control animals were treated similarly except for light treatment.

View Article and Find Full Text PDF

In previous studies we have shown in Alzheimer's disease (AD) an enhanced nuclear estrogen receptor (ER) alpha expression in the cholinergic basal forebrain nuclei, i.e. the vertical limb of the diagonal band of Broca (VDB) and the nucleus basalis of Meynert (NBM), and in a number of hypothalamic nuclei, i.

View Article and Find Full Text PDF

Protein quality control in Alzheimer's disease by the ubiquitin proteasome system.

Prog Neurobiol

December 2004

Netherlands Institute for Brain Research, Graduate School for Neurosciences, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.

The ubiquitin proteasome system (UPS) is the major protein quality control system in eukaryotic cells. Many neurodegenerative diseases are characterized by aggregates and inclusions of aberrant proteins, implying a sub-optimal functioning or defective UPS. The last few years have seen increasing evidence for the involvement of the UPS in neurodegenerative disorders, including Alzheimer's disease (AD).

View Article and Find Full Text PDF

Rho proteins, mental retardation and the neurobiological basis of intelligence.

Prog Brain Res

February 2005

Neurons and Networks Research Group, Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands.

For several decades it has been known that mental retardation is associated with abnormalities in dendrites and dendritic spines. The recent cloning of eight genes which cause nonspecific mental retardation when mutated, provides an important insight into the cellular mechanisms that result in the dendritic abnormalities underlying mental retardation. Three of the encoded proteins, oligophrenin1, PAK3 and alphaPix, interact directly with Rho GTPases.

View Article and Find Full Text PDF

Paired organotypic explants from rat occipital cortex were cultured for up to three weeks in the presence of selective blockers of amino acid receptor blockers, during which period spontaneous action potential generation was monitored electrophysiologically. In contrast to isolated explants (Corner, M.A.

View Article and Find Full Text PDF

Dynamics and plasticity in developing neuronal networks in vitro.

Prog Brain Res

February 2005

Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.

When dissociated cortical tissue is brought into culture, neurons readily grow out by forming axonal and dendritic arborizations and synaptic connections. These developing neuronal networks in vitro display spontaneous firing activity from about the end of the first week in vitro. When cultured on multielectrode arrays firing activity can be recorded from many neurons simultaneously over long periods of time.

View Article and Find Full Text PDF

Competition in neurite outgrowth and the development of nerve connections.

Prog Brain Res

February 2005

Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.

During the development of the nervous system, neurons form their characteristic morphologies and become assembled into synaptically connected networks. In both neuronal morphogenesis and the development of nerve connections, competition plays an important role. Although the notion of competition is commonly used in neurobiology, there is little understanding of the nature of the competitive process and the underlying molecular and cellular mechanisms.

View Article and Find Full Text PDF

Neuronal network formation in human cerebral cortex.

Prog Brain Res

February 2005

Neurons and Networks, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands.

Knowledge of the development of structural and functional connectivity in the human brain is of great fundamental and practical importance, but is largely lacking. In this review qualitative and quantitative data are presented on the formation of dendrites, axons and synapses in different regions of the human cerebral cortex from prenatal life until adulthood. This information is compiled to provide baseline information for comparison of similar data derived from postmortem brains of persons with developmental brain disorders.

View Article and Find Full Text PDF

Purpose: Semaphorins comprise a family of molecules that influence the growth and guidance of neuronal processes. Class-3 semaphorins are secreted proteins, and their effects are mediated by neuropilin (NP) and plexin (Plx) receptors. There is considerable information on mechanisms that influence axonal guidance and plasticity in the mammalian visual system, but a role for semaphorins has received less scrutiny.

View Article and Find Full Text PDF

Type II deiodinase (D2) plays a key role in regulating thyroid hormone-dependent processes in, among others, the central nervous system (CNS) by accelerating the intracellular conversion of T4 into active T3. Just like the well-known daily rhythm of the hormones of the hypothalamo-pituitary-thyroid axis, D2 activity also appears to show daily variations. However, the mechanisms involved in generating these daily variations, especially in the CNS, are not known.

View Article and Find Full Text PDF

Neuropeptides in hypothalamic neuronal disorders.

Int Rev Cytol

February 2005

Netherlands Institute for Brain Research, 1105 AZ, Amsterdam, The Netherlands.

A few examples of hypothalamic, peptidergic disorders leading to clinical signs and symptoms are presented in this review. Increased activity of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) and decreased activity of the vasopressin neurons in the biological clock and of the thyroxine-releasing hormone (TRH) neurons in the PVN contribute to the signs and symptoms of depression. In men, the central nucleus of the bed nucleus of the stria terminalis (BSTc) is about twice as large and contains twice as many somatostatin neurons as in women.

View Article and Find Full Text PDF

Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.

IEEE Trans Biomed Eng

November 2004

Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Neurons and Networks Research Group, 1105 AZ Amsterdam, The Netherlands.

Article Synopsis
  • Scientists studied rat brain cells in a lab for 49 days to see how they communicated with each other.
  • They found that after the first week, the cells started to work together in bursts, but not all parts of the network fired at the same time.
  • Over time, these bursts became faster and more synchronized, showing that the brain cells were getting better at communicating as they developed.
View Article and Find Full Text PDF

The way glucocorticoids affect TRH mRNA expression in the paraventricular nucleus of the hypothalamus is still unclear. In view of its relevance for Cushing's syndrome and depression, we measured TRH mRNA expression in human hypothalami obtained at autopsy by means of quantitative TRH mRNA in situ hybridization. In corticosteroid-treated subjects (n = 10), TRH mRNA hybridization signal was decreased as compared with matched control subjects (n = 10) (Mann-Whitney U test, P = 0.

View Article and Find Full Text PDF

Protocols to study the regulation of a conserved multigene family (SPRR genes) during calcium-induced differentiation of cultured normal human keratinocytes (NHKs) are provided. Transfection of promoter-reporter (CAT or luciferase) constructs, combined with promoter truncation, can be used to study the expression of individual SPRR genes and to identify specific transcription factor binding sites. Interaction of regulatory factors with these control elements can be visualized and quantified by electro phoretic mobility shift analysis.

View Article and Find Full Text PDF

1 The changes of tissue sensitivity to glucocorticoids are associated with many pathological states including neurological diseases. In the present study, using a novel in vitro post-mortem tracing method on human brain slices, we demonstrated that cortisol, a major glucocorticoid hormone in humans, affected axonal transport both in the cortex neurons in four Alzheimer's disease (AD) patients and four nondemented controls. 2 Cortisol appeared to affect axonal transport of prefrontal cortex (PFC) and temporal cortex (TC) neurons in AD patients and controls in a dose-dependent way at concentrations of 30, 60, 120 and 240 microg dl(-1).

View Article and Find Full Text PDF

Following avulsion of a spinal ventral root, motoneurons that project through the avulsed root are axotomized. Avulsion between, for example, L2 and L6 leads to denervation of hind limb muscles. Reimplantation of an avulsed root directed to the motoneuron pool resulted in re-ingrowth of some motor axons.

View Article and Find Full Text PDF

Daily peak plasma glucose concentrations are attained shortly before awakening. Previous experiments indicated an important role for the biological clock, located in the suprachiasmatic nuclei (SCN), in the genesis of this anticipatory rise in plasma glucose concentrations by controlling hepatic glucose production. Here, we show that stimulation of NMDA receptors, or blockade of GABA receptors in the paraventricular nucleus of the hypothalamus (PVN) of conscious rats, caused a pronounced increase in plasma glucose concentrations.

View Article and Find Full Text PDF

Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695.

View Article and Find Full Text PDF

Polyglutamine diseases are characterized by neuronal intranuclear inclusions (NIIs) of expanded polyglutamine proteins, indicating the failure of protein degradation. UBB(+1), an aberrant form of ubiquitin, is a substrate and inhibitor of the proteasome, and was previously reported to accumulate in Alzheimer disease and other tauopathies. Here, we show accumulation of UBB(+1) in the NIIs and the cytoplasm of neurons in Huntington disease and spinocerebellar ataxia type-3, indicating inhibition of the proteasome by polyglutamine proteins in human brain.

View Article and Find Full Text PDF

Molecular misreading, a process discovered in the late 1990s, entails the formation of aberrant transcripts due to the inaccurate conversion of genomic information, and results in an accumulation of aberrant proteins. The aberrant transcripts are formed as a result of a dinucleotide deletion (e.g.

View Article and Find Full Text PDF

Spontaneous action potentials were recorded longitudinally for 4-7 weeks from dissociated rat occipital cortex cells cultured on planar multi-electrode plates, during their development from isolated neurons into synaptically connected neuronal networks. Activity typically consisted of generalized bursts lasting up to several seconds, separated by variable epochs of sporadic firing at some of the active sites. These network bursts displayed discharge patterns with age-dependent firing rate profiles, and durations significantly increasing in the 3rd week in vitro and decreasing after about 1 month in vitro, when they evolved into short events with prompt onsets.

View Article and Find Full Text PDF

In order for any organism to function properly, it is crucial that it be table to control the timing of its biological functions. An internal biological clock, located, in mammals, in the suprachiasmatic nucleus of the hypothalamus (SCN), therefore carefully guards this temporal homeostasis by delivering its message of time throughout the body. In view of the large variety of body functions (behavioral, physiological, and endocrine) as well as the large variety in their preferred time of main activity along the light:dark cycle, it seems logical to envision different means of time distribution by the SCN.

View Article and Find Full Text PDF

Long-term effects of cranial irradiation for childhood malignancy on sleep in adulthood.

Eur J Endocrinol

April 2004

Netherlands Institute for Brain Research and Institute for Clinical and Experimental Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.

Background: Cranial radiation therapy (CRT) is required for successful treatment of a variety of brain tumours in childhood.

Objective: To investigate whether childhood CRT leads to altered sleep-wakefulness organization in adulthood, and to identify the determinants of such alterations.

Subjects And Methods: Subjective (questionnaires) and objective (actigraphy) measures of circadian rhythmicity and sleep were assessed in 25 individuals, 8-29 years after CRT for medulloblastoma (n=17) or other intracranial tumours (n=8), and in a group of 34 age-matched healthy individuals.

View Article and Find Full Text PDF