5 results match your criteria: "Nazarbayev University School of Science and Technology[Affiliation]"

Nuclear receptor tyrosine kinases (nRTKs) are aberrantly upregulated in many types of cancers, but the regulation of nRTK remains unclear. We previously showed androgen deprivation therapy (ADT) induces nMET in castration-resistant prostate cancer (CRPC) specimens. Through gene expression microarray profiles reanalysis, we identified that nMET signaling requires ARF for CRPC growth in Pten/Trp53 conditional knockout mouse model.

View Article and Find Full Text PDF

Role of Yes-associated protein in cancer: An update.

Oncol Lett

October 2016

Department of Biology, Nazarbayev University School of Science and Technology, Astana 010000, Republic of Kazakhstan.

Yes-associated protein (YAP) is an oncoprotein located in the cytoplasm in an inactive form, and when activated, it translocates to the nucleus and activates the transcription of genes responsible for cell division and apoptosis. YAP is one of the downstream regulatory proteins in the Hippo signaling pathway, which is important in cell proliferation and regeneration. Due to its great importance, YAP is regulated very strictly by different regulatory systems.

View Article and Find Full Text PDF

A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro.

Toxins (Basel)

April 2016

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Hepatitis B virus (HBV) infection is a major worldwide health problem which can cause acute and chronic hepatitis and can significantly increase the risk of liver cirrhosis and primary hepatocellular carcinoma (HCC). Nowadays, clinical therapies of HBV infection still mainly rely on nucleotide analogs and interferons, the usage of which is limited by drug-resistant mutation or side effects. Defensins had been reported to effectively inhibit the proliferation of bacteria, fungi, parasites and viruses.

View Article and Find Full Text PDF

Proviral integration site for Moloney murine leukemia virus-1 (Pim-1) is a serine/threonine kinase that regulates multiple cellular functions such as cell cycle, cell survival, drug resistance. Aberrant elevation of Pim-1 kinase is associated with numerous types of cancer. Two distinct isoforms of Pim-1 (Pim-1S and Pim-1L) show distinct cellular functions.

View Article and Find Full Text PDF

Since the last decade, the PIM family serine/threonine kinases have become a focus in cancer research. Numerous clinical data supports that overexpression of PIM1 is associated with tumor formation in various tissues. However, little is known regarding the function of PIM1 in cancer stem cells.

View Article and Find Full Text PDF