7 results match your criteria: "Natural Resources Institute Finland Joensuu Finland.[Affiliation]"

Studies on host-parasite systems that have experienced distributional shifts, range fragmentation, and population declines in the past can provide information regarding how parasite community richness and genetic diversity will change as a result of anthropogenic environmental changes in the future. Here, we studied how sequential postglacial colonization, shifts in habitat, and reduced host population sizes have influenced species richness and genetic diversity of (Acanthocephala: Polymorphidae) parasites in northern European marine, brackish, and freshwater seal populations. We collected population samples from Arctic, Baltic, Ladoga, and Saimaa ringed seal subspecies and Baltic gray seals, and then applied COI barcoding and triple-enzyme restriction-site associated DNA (3RAD) sequencing to delimit species, clarify their distributions and community structures, and elucidate patterns of intraspecific gene flow and genetic diversity.

View Article and Find Full Text PDF

Seasonal changes in diel haul-out patterns of the lacustrine Saimaa ringed seal () were studied using a combination of satellite telemetry and camera traps during 2007-2015. We found the haul-out activity patterns to vary seasonally. Our results show that during the ice-covered winter period before the seals start their annual molt, the peak in haul-out generally occurs at midnight.

View Article and Find Full Text PDF

The Saimaa ringed seal () is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck.

View Article and Find Full Text PDF

In heterogeneous landscapes, resource selection constitutes a crucial link between landscape and population-level processes such as density. We conducted a non-invasive genetic study of white-tailed deer in southern Finland in 2016 and 2017 using fecal DNA samples to understand factors influencing white-tailed deer density and space use in late summer prior to the hunting season. We estimated deer density as a function of landcover types using a spatial capture-recapture (SCR) model with individual identities established using microsatellite markers.

View Article and Find Full Text PDF

Adult sex ratio and fecundity (juveniles per female) are key population parameters in sustainable wildlife management, but inferring these requires abundance estimates of at least three age/sex classes of the population (male and female adults and juveniles). Prior to harvest, we used an array of 36 wildlife camera traps during 2 and 3 weeks in the early autumn of 2016 and 2017, respectively. We recorded white-tailed deer adult males, adult females, and fawns from the pictures.

View Article and Find Full Text PDF

Fine roots and above-ground litterfall play a pivotal role in carbon dynamics in forests. Nonetheless, direct estimation of stocks of fine roots remains methodologically challenging. Models are thus widely used to estimate these stocks and help elucidate drivers of fine root growth and turnover, at a range of scales.

View Article and Find Full Text PDF

Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics.

View Article and Find Full Text PDF