544 results match your criteria: "National University of Singapore (Suzhou) Research Institute[Affiliation]"

Sensing Technologies for Outdoor/Indoor Farming.

Biosensors (Basel)

December 2024

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.

To face the increasing requirement for grains as the global population continues to grow, improving both crop yield and quality has become essential. Plant health directly impacts crop quality and yield, making the development of plant health-monitoring technologies essential. Variable sensing technologies for outdoor/indoor farming based on different working principles have emerged as important tools for monitoring plants and their microclimates.

View Article and Find Full Text PDF

Enhancing Rashba Spin-Splitting Strength by Orbital Hybridization.

ACS Nano

December 2024

Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore.

A Rashba spin-splitting state with spin-momentum locking enables the charge-spin interconversion known as the Rashba effect, induced by the interplay of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC). Enhancing spin-splitting strength is promising to achieve high spin-orbit torque (SOT) efficiency for low-power-consumption spintronic devices. However, the energy scale of natural ISB at the interface is relatively small, leading to the weak Rashba effect.

View Article and Find Full Text PDF

To implement digital-twin smart home applications, the mat sensing system based on triboelectric sensors is commonly used for gait information collection from daily activities. Yet traditional mat sensing systems often miss upper body motions and fail to adequately project these into the virtual realm, limiting their specific application scenarios. Herein, triboelectric mat multimodal sensing system is designed, enhanced with a commercial infrared imaging sensor, to capture diverse sensory information for sleep and emotion-relevant activity monitoring without compromising privacy.

View Article and Find Full Text PDF

Oxalate decarboxylase converts oxalate to formate and CO without requiring organic cofactors, making it biotechnologically relevant for applications in food, agriculture, and diagnostics. Its activity is highly dependent on pH; however, the pH-dependent catalytic mechanism remains poorly understood. This study identified a novel oxalate decarboxylase, BsOxdC, from Bacillus safensis and investigated its catalytic properties through heterologous expression and enzymatic assays.

View Article and Find Full Text PDF

Given the growing interest in dairy-free milk analog products, new and diversified alternatives are pivotal to push the market forward. Germination and fermentation are traditional processing technologies used in plant-based milk production. However, the combination of both has not been extensively investigated.

View Article and Find Full Text PDF

Programmable metasurfaces (PMSs) exhibit great potentials in target detection techniques, because they can take actions to change channel propagation characteristics which introduces further degrees of freedom for system optimizations. However, responses of most traditional PMSs are sensitive to incident angles of impinging electromagnetic waves, resulting in a failure of angular estimation to dynamic targets coming from different directions. Herein, by proposing a fully resonant structure and introducing a mode-alignment technology, we report an isotropic angle-insensitive PMS whose phase response is stable with respect to different incident angles in both elevation- and azimuth-planes.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), which play significant regulatory roles in maintaining homeostasis and influencing immune responses, significantly impact gut microbiota composition and function, affecting overall gut health. Despite considerable progress, there are still knowledge gaps regarding the mechanisms by which EVs, including plant-derived EVs (PDEVs), animal-derived EVs (ADEVs), and microbiota-derived EVs (MDEVs), modulate gut health. This review delves into the roles and mechanisms of EVs from diverse sources in regulating gut health, focusing on their contributions to maintaining epithelial barrier integrity, facilitating tissue healing, eliciting immune responses, controlling pathogens, and shaping microbiota.

View Article and Find Full Text PDF

Non-Hermitian Skin Effect in Many-Body Thermophotonics.

ACS Nano

November 2024

Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, 117583 Republic of Singapore.

The tight-binding model, foundational in depicting electronic behaviors in solid-state physics, has recently contributed to the understanding of non-Hermitian skin effects in optics, acoustics, and mechanics. However, tight-binding model is primarily built upon scalar nearest couplings, which in turn does not fit to describe the vectorial long-range interactions inherently in thermophotonics. Here, we report a strategy involving many-body radiative interactions in a two-dimensional thermophotonic lattice, and further reveal two types of orthogonal non-Hermitian skin modes in a reciprocal system.

View Article and Find Full Text PDF

In this study, Typhimurium dry surface biofilm (DSB) formation was investigated in comparison with wet surface biofilm (WSB) development. Confocal laser scanning microscopic analysis revealed a prominent green cell signal during WSB formation, whereas a red signal predominated during DSB formation. Electron microscopy was also used to compare the features of DSB and WSB.

View Article and Find Full Text PDF

Room Temperature Magnetic Skyrmions in Gradient-Composition Engineered CoPt Single Layers.

ACS Nano

November 2024

Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States.

Topologically protected magnetic skyrmions in magnetic materials are stabilized by an interfacial or bulk Dzyaloshinskii-Moriya interaction (DMI). Interfacial DMI decays with an increase of the magnetic layer thickness in just a few nanometers, and bulk DMI typically stabilizes magnetic skyrmions at low temperatures. Consequently, more flexibility in the manipulation of DMI is required for utilizing nanoscale skyrmions in energy-efficient memory and logic devices at room temperature (RT).

View Article and Find Full Text PDF

Papaya leaves have been used as food and traditional herbs for the treatment of cancer, diabetes, asthma, and virus infections, but the active principle has not been understood. We hypothesized that the anti-inflammatory activity could be the predominant underlying principle. To test this, we extracted papaya leaf juice with different organic solvents and found that the ethyl acetate (EA) fraction showed the most outstanding anti-inflammatory activity by suppressing the production of nitric oxide (NO, IC = 24.

View Article and Find Full Text PDF

Growth and metabolism of halophilic Candida versatilis and Tetragenococcus halophilus in simultaneous and sequential fermentation of salted soy whey.

Food Microbiol

January 2025

Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215213, China. Electronic address:

This study investigated various strategies: mono-, simultaneous and sequential fermentation of halophilic Candida versatilis and Tetragenococcus halophilus to valorize salted whey, a side stream of salted tofu (pressed beancurd) production, with an ultimate goal of creating a soy sauce-like condiment. Growth, glucose, organic acids were monitored throughout fermentation, while free amino acids and volatile compounds were analyzed on the final days. In monoculture fermentation, both C.

View Article and Find Full Text PDF
Article Synopsis
  • The kagome lattice is important for studying complex electronic states, but creating it in 2D semiconductors for practical uses is difficult.
  • A new approach involves using a coloring-triangle lattice within a modified triangular lattice to generate kagome-like bands.
  • Researchers discovered these low-energy kagome-like bands in a 7-layer-thick 2D semiconductor, CrSe, which has unique properties linked to its atomic structure and electron interactions.
View Article and Find Full Text PDF
Article Synopsis
  • Variegin and its variant, ultravariegin (UV), have shown potential in early studies for improving blood clot inhibition without the bleeding risks associated with traditional drugs like heparin.
  • PEGylation, a technique that attaches PEG chains to the UV peptide, significantly enhances its circulation time and effectiveness, allowing for prolonged anticoagulant effects in animal models while maintaining its efficacy.
View Article and Find Full Text PDF

5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF was observed inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) and cytoplasmic reactive oxygen species (ROS) production with the IC of 11.

View Article and Find Full Text PDF

Cultured meat (CM) has been hailed as a sustainable future meat production technology that requires scaffolds to support cell growth. Plant proteins are the most promising raw materials for edible scaffolds but remain underutilized. In this study, kafirin, an abundant, readily available, and nonallergenic prolamin extracted from red sorghum, was explored to fabricate 3D porous sponge-like scaffolds via a simple template-leaching method.

View Article and Find Full Text PDF

Fourier Ptychographic Coherent Anti-Stokes Raman Scattering Microscopy with Point-Scanning for Super-Resolution Imaging.

Small Methods

October 2024

Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore.

Fourier ptychography (FP) is a high resolution wide-field imaging method based on the extended aperture in the Fourier space, which is synthesized from raw images with varying illumination angles. If FP is extended to coherent nonlinear optical imaging, the resolution could be further improved due to the increase of the cutoff frequency of the synthesized coherent optical transfer function (C-OTF) with respect to the order of nonlinear optical processes. However, there is a fundamental conflict between wide-field FP and nonlinear optical imaging, whereby the nonlinear optical imaging typically requires a focused excitation laser beam with high power density.

View Article and Find Full Text PDF

Modular alkene synthesis from carboxylic acids, alcohols and alkanes via integrated photocatalysis.

Nat Chem

November 2024

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, P. R. China.

Alkenes serve as versatile building blocks in diverse organic transformations. Despite notable advancements in olefination methods, a general strategy for the direct conversion of carboxylic acids, alcohols and alkanes into alkenes remains a formidable challenge owing to their inherent reactivity disparities. Here we demonstrate an integrated photochemical strategy that facilitates a one-pot conversion of these fundamental building blocks into alkenes through a sequential C(sp)-C(sp) bond formation-fragmentation process, utilizing an easily accessible and recyclable phenyl vinyl ketone as the 'olefination reagent'.

View Article and Find Full Text PDF

Ultrahigh-resolution, high-fidelity quantum dot pixels patterned by dielectric electrophoretic deposition.

Light Sci Appl

September 2024

School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.

The high pixel resolution is emerging as one of the key parameters for the next-generation displays. Despite the development of various quantum dot (QD) patterning techniques, achieving ultrahigh-resolution (>10,000 pixels per inch (PPI)) and high-fidelity QD patterns is still a tough challenge that needs to be addressed urgently. Here, we propose a novel and effective approach of orthogonal electric field-induced template-assisted dielectric electrophoretic deposition to successfully achieve one of the highest pixel resolutions of 23090 (PPI) with a high fidelity of up to 99%.

View Article and Find Full Text PDF

Atomic-engineered gradient tunable solid-state metamaterials.

Proc Natl Acad Sci U S A

September 2024

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.

Metamaterial has been captivated a popular notion, offering photonic functionalities beyond the capabilities of natural materials. Its desirable functionality primarily relies on well-controlled conditions such as structural resonance, dispersion, geometry, filling fraction, external actuation, etc. However, its fundamental building blocks-meta-atoms-still rely on naturally occurring substances.

View Article and Find Full Text PDF

Acacetin (ACA) and biochanin A (BCA) are isomeric monomethoxyflavones with different structural positions of the 4'-methoxy-phenyl group. Both of them are present in many commonly consumed foods, such as citrus fruits and vegetables, and have been discovered with anti-inflammatory activities, but their mechanisms of action are not clearly elucidated at the molecular level. Herein, we reported the structure-activity relationship of ACA and BCA regarding their potency in inhibiting nitric oxide (NO) production, proinflammatory enzyme expression, and mRNA expression of proinflammatory cytokines in the lipopolysaccharide (LPS)-induced RAW 264.

View Article and Find Full Text PDF

Metabolomics ravels flavor compound formation and metabolite transformation in rapid fermentation of salt-free fish sauce from catfish frames induced by mixed microbial cultures.

Food Chem

January 2025

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China.

This study demonstrates that the co-inoculation with Lactiplantibacillus plantarum, Pichia fermentans and Staphylococcus saprophyticus accelerates catfish frame fish sauce fermentation. Over a 3-day period, significant changes occurred in physicochemical properties, microbial profiles, flavor compounds, and metabolomic spectra. Notable increases in acidity coupled with decreases in glucose underscored the robust environmental adaptability of the employed microorganisms.

View Article and Find Full Text PDF

Unveiling the cocoa-carob flavour gap in dark chocolates via instrumental and descriptive sensory analyses.

Food Res Int

November 2024

Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215213, China. Electronic address:

Roasted carob pulp (Ceratonia siliqua) is a cocoa substitute known for its faint cocoa-like resemblance. However, the cocoa-carob flavour gap remains poorly uncharacterised. This study aimed to elucidate the sensory and molecular aspects of this flavour gap in a 70 % dark chocolate formulation via a two-pronged instrumental-sensorial approach.

View Article and Find Full Text PDF

Strain-Release-Driven Electrochemical Skeletal Rearrangement of Non-Biased Alkyl Cyclopropanes/Butanes.

Angew Chem Int Ed Engl

September 2024

Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, Singapore, 117544, Republic of Singapore.

Capitalizing the inherent strain energy within molecules, strain-release-driven reactions have been widely employed in organic synthesis. Small cycloalkanes like cyclopropanes and cyclobutanes, with their moderate ring strain, typically require dense functionalization to induce bias or distal activation of (hetero) aromatic rings via single-electron oxidation for relieving the tension. In this study, we present a pioneering direct activation of alkyl cyclopropanes/butanes through electrochemical oxidation.

View Article and Find Full Text PDF

d-Allulose, a C-3 epimer of d-fructose, is a rare sugar with ∼70% of the sweetness of sucrose but a caloric content of only 0.4 kcal/g. Due to its low-calorie nature, d-allulose has garnered increasing interest in the food industry.

View Article and Find Full Text PDF