1,238 results match your criteria: "National University of Science and Technology (MISiS)[Affiliation]"

Cancer, one of the world's deadliest diseases, is expected to claim an estimated 16 million lives by 2040. Three-dimensional (3D) models of cancer have become invaluable tools for the study of tumor biology and the development of new therapies. The tumor microenvironment (TME) is a determinant of tumor progression and has implications for clinical therapies.

View Article and Find Full Text PDF

Effect of Selenium, Copper and Manganese Nanocomposites in Arabinogalactan Matrix on Potato Colonization by Phytopathogens and .

Plants (Basel)

December 2024

Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, 37077 Göttingen, Germany.

The effect of chemically synthesized nanocomposites (NCs) of selenium (Se/AG NC), copper oxide (Cu/AG NC) and manganese hydroxide (Mn/AG NC), based on the natural polymer arabinogalactan (AG), on the processes of growth, development and colonization of potato plants in vitro was studied upon infection with the causative agent of potato blackleg-the Gram-negative bacterium -and the causative agent of ring rot-the Gram-positive bacterium (). It was shown that the infection of potatoes with reduced the root formation of plants and the concentration of pigments in leaf tissues. The treatment of plants with Cu/AG NC before infection with stimulated leaf formation and increased the concentration of pigments in them.

View Article and Find Full Text PDF

Biomimetic hydrogels have garnered increased interest due to their considerable potential for use in various fields, such as tissue engineering, 3D cell cultivation, and drug delivery. The primary challenge for applying hydrogels in tissue engineering is accurately evaluating their mechanical characteristics. In this context, we propose a method using scanning ion conductance microscopy (SICM) to determine the rigidity of living human breast cancer cells MCF-7 cells grown on a soft, self-assembled Fmoc-FF peptide hydrogel.

View Article and Find Full Text PDF

In this paper, we introduce the workflow for converting qubit circuits represented by Open Quantum Assembly format (OpenQASM, also known as QASM) into the qudit form for execution on qudit hardware and provide a method for translating qudit experiment results back into qubit results. We present the comparison of several qudit transpilation regimes, which differ in decomposition of multicontrolled gates: as ordinary qubit transpilation and execution, with d=3 levels and single qubit in qudit, and with d=4 levels and 2 qubits per ququart. We provide several examples of transpiling circuits for trapped ion qudit processors, which demonstrate potential advantages of qudits.

View Article and Find Full Text PDF

We develop a novel key routing algorithm for quantum key distribution (QKD) networks that utilizes a distribution of keys between remote nodes, i.e., not directly connected by a QKD link, through multiple non-overlapping paths.

View Article and Find Full Text PDF

Core-Shell PLGA Nanoparticles: In Vitro Evaluation of System Integrity.

Biomolecules

December 2024

Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia.

Article Synopsis
  • The study compared core-shell nanoparticles with a PLGA core and various polymer shells, focusing on their structural integrity.
  • Different methods were used to prepare the nanoparticles, and fluorescent labeling was employed to analyze their properties and confirm core-shell structure.
  • Results showed that the polymer shells improved cellular uptake in glioma cells and maintained structural integrity, suggesting a useful framework for nanoparticle development.
View Article and Find Full Text PDF

Nanopipettes, as a class of solid-state nanopores, have evolved into universal tools in biomedicine for the detection of biomarkers and different biological analytes. Nanopipette-based methods combine high sensitivity, selectivity, single-molecule resolution, and multifunctionality. The features have significantly expanded interest in their applications for the biomolecular detection, imaging, and molecular diagnostics of real samples.

View Article and Find Full Text PDF

Correction: Elucidating the influence of side chains on the self-assembly of semi-flexible mesogens.

Chem Commun (Camb)

January 2025

Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361, 15 rue Jean Starcky, 68057 Mulhouse, France.

Correction for 'Elucidating the influence of side chains on the self-assembly of semi-flexible mesogens' by Raluca I. Gearba , , 2025, https://doi.org/10.

View Article and Find Full Text PDF

Nanomaterials are vital in catalysis, sensing, energy storage, and biomedicine and now incorporate multiprincipal element materials to meet evolving technological demands. However, achieving a uniform distribution of multiple elements in these nanomaterials poses significant challenges. In this study, various Cu-Ni compositions were used as a model system to investigate the formation of bimetallic nanoparticles by employing computer simulation molecular dynamics methods and comparing the results with observations from solution-combustion-synthesized materials of the same compositions.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperthermia enhances cancer treatment by raising cell temperatures to induce damage, often combined with other therapies, making temperature regulation essential.
  • The study presents a straightforward method for creating hybrid plasmonic nanodiamonds coated with either an Au shell or Au nanoparticles, which improves both heating and nanoscale temperature measurement.
  • These hybrid nanodiamonds effectively generate heat when exposed to light, proving useful in local photothermal therapy for melanoma by successfully eliminating cancer cells while monitoring temperature throughout the process.
View Article and Find Full Text PDF

Elucidating the influence of side chains on the self-assembly of semi-flexible mesogens.

Chem Commun (Camb)

December 2024

Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361, 15 rue Jean Starcky, 68057 Mulhouse, France.

In the development of functional materials, side chains are traditionally incorporated into the primary chemical structure to induce liquid-crystalline behavior or to enhance solubility for improved processability. However, emerging evidence suggests that side chains play a far more complex role. This study presents a case of a double helical supramolecular structure formed by star-shaped mesogens in the absence of specific interactions.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced microscopy techniques to analyze how different Aβ isoforms affect the mechanical properties (Young's modulus) and reactive oxygen species (ROS) levels in SH-SY5Y cells.
  • * Findings indicate that unmodified Aβ increases cell stiffness the most after 4 hours, whereas pS8-Aβ has the strongest effect on stiffness and ROS levels after 24 hours, suggesting that Aβ modifications influence cellular signaling pathways
View Article and Find Full Text PDF

In this paper, we present the synthesis and characterization of a rubidium vanadium(III) vanadyl(IV) phosphate, obtained under hydrothermal conditions. The new compound crystallizes in the triclinic space group 1̄ with the unit cell parameters = 9.637(1), = 12.

View Article and Find Full Text PDF

Glass-coated microwires exhibiting magnetic bistability have garnered significant attention as promising wireless sensing elements, primarily due to their rapid magnetization switching capabilities. These microwires consist of a metallic core with diameter , encased in a glass coating, with a total diameter . In this study, we investigated how the dimensions of both components and their ratio (/) influence the magnetization reversal behavior of Fe-based microwires.

View Article and Find Full Text PDF

Diamond's exceptional properties make it a key material in various technologies, but synthesizing its low-dimensional form, diamane─a diamond film with atomic thickness─remains challenging. Diamane synthesis is complicated by the instability of ultrathin films, which tend to delaminate into multilayer graphene. However, chemically induced phase transitions, where the adsorption of specific atoms stabilizes the film, offer a potential solution.

View Article and Find Full Text PDF

The growing interest in biomimetic hydrogels is due to their successful applications in tissue engineering, 3D cell culturing and drug delivery. The major characteristics of hydrogels include swelling, porosity, degradation rate, biocompatibility, and mechanical properties. Poor mechanical properties can be regarded as the main limitation for the use of hydrogels in tissue engineering, and advanced techniques for its precise evaluation are of interest.

View Article and Find Full Text PDF

The effects of severe plastic deformation on NiTi alloys' structure and properties have been extensively studied over the past decades. However, there is a notable lack of systematic data regarding the impact of industrial hot deformation techniques on these alloys. This gap arises from challenges in manufacturing processes related to the unevenness of ingots produced by casting technologies.

View Article and Find Full Text PDF

This study aims to investigate the potential role of antioxidants in oxidative stress and its consequent impact on the mechanical properties of neuronal cells, particularly the stress induced by amyloid-beta (1-42) (Aβ) aggregates. A key aspect of our research involved using scanning ion-conductance microscopy (SICM) to assess the mechanical properties (Young's modulus) of neuronal cells under oxidative stress. Reactive oxygen species (ROS) level was measured in single-cell using the electrochemical method by low-invasive Pt nanoelectrode.

View Article and Find Full Text PDF

Additive manufacturing of metallic parts by Selective Laser Melting (SLM) implies high temperature gradients and small volume of the melt bath. These conditions make the process scales close to those available for state-of-the-art massively parallel atomistic simulations. In the paper, the microscopic mechanisms responsible for the formation of primary microstructure during molten metal solidification are investigated using classical molecular dynamics (CMD).

View Article and Find Full Text PDF

p-NiO/n-GaO heterojunction (HJ) diodes exhibit much larger changes in their properties upon 1.1 MeV proton irradiation than Schottky diodes (SDs) prepared on the same material. In p-NiO/GaO HJ diodes, the narrow region adjacent to the HJ boundary is found to contain a high density of relatively deep centers with levels near E-0.

View Article and Find Full Text PDF

Red blood cells respond to fluctuations in blood plasma pH by changing the rate of biochemical and physical processes that affect the specific functions of individual cells. This study aimed to analyze the effect of pH changes on red blood cell morphology and structure. The findings revealed that an increase or decrease in pH above or below the physiological level of pH 7.

View Article and Find Full Text PDF

This paper aimed to research the role of zeolite and palm fiber in changing strength of cement-treated soil. The unconfined compressive strength (UCS) testwas mainly used to study the changes of strength of cement-treated soil by varied content of cement, zeolite, palm fiber under different curing period. The optimum substitution rate of zeolite for cement was researched for the purpose of increasing of strength of cement-treated soil and low carbon and environment protection, while the optimum content of palm fiber was explored for improving of strength and ductility of cement-treated soil by means of analytic software.

View Article and Find Full Text PDF

Five bifunctional copper chelating agents, , designed to prevent beta-amyloid (Aβ) aggregation, were synthesized, and the leader compound () was chosen. acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity. Reactive oxygen species measurements provided by the Pt-nanoelectrode technique in single Aβ-affected human neuroblastoma SH-SY5Y cells revealed significant antioxidant activity of .

View Article and Find Full Text PDF
Article Synopsis
  • Neutrophils show potential for delivering nanodrugs to tumors, with this study focusing on how they internalize different types of nanoparticles, like liposomes and PLGA.
  • Various techniques were used, including microscopy and flow cytometry, to assess how well neutrophils take up these nanoparticles and how cultivation conditions affect this process.
  • Results indicated that while all nanoparticles were taken up, the mechanisms varied; notably, the presence of plasma and specific immunoglobulins were crucial for the internalization of PLGA nanoparticles, highlighting the role of the external environment in enhancing drug delivery efficacy.
View Article and Find Full Text PDF

Background/objectives: One of the hallmarks of Alzheimer's disease (AD) is the accumulation of aggregated beta-amyloid (Aβ) protein in the form of senile plaques within brain tissue. Senile plaques contain various post-translational modifications of Aβ, including prevalent isomerization of Asp7 residue. The Asp7 isomer has been shown to exhibit increased neurotoxicity and induce amyloidogenesis in brain tissue of transgenic mice.

View Article and Find Full Text PDF