11 results match your criteria: "National Taiwan Universitygrid.19188.39[Affiliation]"

The -acyl-d-amino acid amidohydrolase (-d-AAase) of Variovorax paradoxus Iso1 can enantioselectively catalyze the zinc-assisted deacetylation of -acyl-d-amino acids to yield consistent d-amino acids. A putative FAD-binding glycine/d-amino acid oxidase was located immediately upstream of the gene. The gene encoding this protein was cloned into Escherichia coli BL21 (DE3)pLysS and overexpressed at 25°C for 6 h with 0.

View Article and Find Full Text PDF
Article Synopsis
  • The KEOPS complex is crucial for various functions in eukaryotes, but its specific role in fungal pathogens, particularly Cryptococcus neoformans, is not well understood.
  • Researchers identified four core components of the KEOPS complex in C. neoformans and found that deleting three of them (Pcc1, Kae1, and Bud32) severely affected growth, development, stress responses, and virulence, indicating their essential roles in pathogenicity.
  • Furthermore, the study revealed that the KEOPS complex has unique functions in both modifying tRNA and regulating gene expression, particularly in ergosterol biosynthesis, suggesting it could be a target for new antifungal drugs.
View Article and Find Full Text PDF

The Taitung region is one of Taiwan's main sites for ginger agriculture. Due to issues with disease and nutrients, farmers cannot use continuous cropping techniques on ginger, meaning that the ginger industry is constantly searching for new land. Continuous cropping increases the risk of infection by Pythium myriotylum and Ralstonia solanacearum, which cause soft rot disease and bacterial wilt, respectively.

View Article and Find Full Text PDF

Gut bacteria play vital roles in the dietary detoxification, digestion, and nutrient supplementation of hosts during dietary specialization. The roles of gut bacteria in the host can be unveiled by comparing communities of specialist and generalist bacterial species. However, these species usually have a long evolutionary history, making it difficult to determine whether bacterial community differentiation is due to host dietary adaptation or phylogenetic divergence.

View Article and Find Full Text PDF

Some cyanobacteria can perform far-red light photoacclimation (FaRLiP), which allows them to use far-red light (FRL) for oxygenic photosynthesis. Most of the cyanobacteria able to use FRL were discovered in low visible-light (VL; λ = 400-700 nm) environments that are also enriched in FRL (λ = 700-800 nm). However, these cyanobacteria grow faster in VL than in FRL in laboratory conditions, indicating that FRL is not their preferred light source when VL is available.

View Article and Find Full Text PDF

Stenotrophomonas maltophilia, a nonfermenting Gram-negative rod, is frequently isolated from the environment and is emerging as a multidrug-resistant global opportunistic pathogen. S. maltophilia harbors eight RND-type efflux pumps that contribute to multidrug resistance and physiological functions.

View Article and Find Full Text PDF

Most of SARS-CoV-2 neutralizing antibodies (nAbs) targeted the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, mutations at RBD sequences found in the emerging SARS-CoV-2 variants greatly reduced the effectiveness of nAbs. Here we showed that four nAbs, S2-4D, S2-5D, S2-8D, and S2-4A, which recognized a conserved epitope in the S2 subunit of the S protein, can inhibit SARS-CoV-2 infection through blocking the S protein-mediated membrane fusion.

View Article and Find Full Text PDF

The propagation of the hepatitis C virus (HCV) is regulated in part by the phosphorylation of its nonstructural protein NS5A that undergoes sequential phosphorylation on several highly conserved serine residues and switches from a hypo- to a hyperphosphorylated state. Previous studies have shown that NS5A sequential phosphorylation requires NS3 encoded on the same NS3-NS4A-NS4B-NS5A polyprotein. Subtle mutations in NS3 without affecting its protease activity could affect NS5A phosphorylation.

View Article and Find Full Text PDF

Bacterial cells are encased in peptidoglycan (PG), a polymer of disaccharide -acetylglucosamine (GlcNAc) and -acetyl-muramic acid (MurNAc) cross-linked by peptide stems. PG is synthesized in the cytoplasm as UDP-MurNAc-peptide precursors, of which the amino acid composition of the peptide is unique, with l-Ala added at the first position in most bacteria but with l-Ser or Gly in some bacteria. YfiH is a PG-editing factor whose absence causes misincorporation of l-Ser instead of l-Ala into peptide stems, but its mechanistic function is unknown.

View Article and Find Full Text PDF

Since the D614G substitution in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, the variant strain has undergone a rapid expansion to become the most abundant strain worldwide. Therefore, this substitution may provide an advantage for viral spreading. To explore the mechanism, we analyzed 18 viral isolates containing S proteins with either G614 or D614 (S-G614 and S-D614, respectively).

View Article and Find Full Text PDF

Nervous necrosis virus (NNV) belongs to the genus of the Nodaviridae family and is the main cause of viral nervous necrosis disease in marine fish larvae and juveniles worldwide. The NNV virion contains two positive-sense, single-stranded RNA genomes, which encode RNA-dependent RNA polymerase, coat protein, and B2 protein. Interestingly, NNV infection can shut off host translation in orange-spotted grouper (Epinephelus coioides) brain cells; however, the detailed mechanisms of this action remain unknown.

View Article and Find Full Text PDF