1,017 results match your criteria: "National Research Nuclear University Mephi[Affiliation]"

This article discusses the design and analysis of a new chemical chemosensor for detecting mercury(II) ions. The chemosensor is a hydrazone made from 4-methylthiazole-5-carbaldehyde and fluorescein hydrazide. The structure of the chemosensor was confirmed using various methods, including nuclear magnetic resonance spectroscopy, infrared spectroscopy with Fourier transformation, mass spectroscopy, and quantum chemical calculations.

View Article and Find Full Text PDF

Polycationic photosensitizers (PS) are not susceptible to aggregation in solutions, but their high local concentrations in Gram-negative bacteria can be sufficient for aggregation and reduced effectiveness of antibacterial photodynamic treatment. By measuring fluorescence spectra and kinetics we were able to evaluate the degree of aggregation of polycationic PS ZnPcCholin Gram-negative bacteria E.K12 TG1.

View Article and Find Full Text PDF
Article Synopsis
  • Cervical cancer is a significant health issue among young women, prompting the need for better diagnosis and treatment methods, particularly focusing on photodynamic therapy (PDT) using chlorin e6 (Ce6).
  • A clinical study with 94 women evaluated the effectiveness of PDT versus traditional conization treatments, finding that those who received PDT showed greater improvement in cytological outcomes and fewer cervical lesions.
  • Results indicated that patients undergoing PDT had better reproductive outcomes, demonstrating its higher clinical efficacy and safety in treating cervical preinvasive conditions compared to standard surgical treatment.
View Article and Find Full Text PDF

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism.

View Article and Find Full Text PDF

Background: Hypoxia is a characteristic feature of many tumors. It promotes tumor proliferation, metastasis, and invasion and can reduce the effectiveness of many types of cancer treatment.

Objective: The aim of this study was to investigate the pharmacokinetics of methylene blue (MB) and its impact on the tumor oxygenation level at mouse Lewis lung carcinoma (LLC) model using spectroscopic methods.

View Article and Find Full Text PDF

High X-ray absorption combined with photothermal properties make bismuth nanoparticles (Bi NP) a promising agent for multimodal cancer theranostics. However, the synthesis of Bi NP by the "classical" chemical methods has numerous limitations, including potential toxicity of the produced nanomaterials. Here we studied in vitro toxicity of laser-synthesized Bi NP coated with Pluronic F-127 on mouse fibroblast cell line L929.

View Article and Find Full Text PDF

Nanoscale morphological features of branched processes of glial cells may be of decisive importance for neuron-astrocyte interactions in health and disease. The paper presents the results of a correlation analysis of images of thin processes of astrocytes in nervous tissue of the mouse brain, which were obtained by scanning probe microscopy (SPM) and transmission electron microscopy (TEM) with high spatial resolution. Samples were prepared and imaged using a unique hardware combination of ultramicrotomy and SPM.

View Article and Find Full Text PDF

Serine-threonine protein kinases of the DYRK and CLK families regulate a variety of vital cellular functions. In particular, these enzymes phosphorylate proteins involved in pre-mRNA splicing. Targeting splicing with pharmacological DYRK/CLK inhibitors emerged as a promising anticancer strategy.

View Article and Find Full Text PDF

The present study explores visible light-assisted photodegradation of ciprofloxacin hydrochloride (CIP) antibiotic as a promising solution to water pollution. The focus is on transforming the optical and electronic properties of BiOCl through the generation of oxygen vacancies (OVs) and the exposure of (110) facets, forming a robust S-scheme heterojunction with WS. The resultant OVs mediated composite with an optimal ratio of WS and BiOCl-OV (4-WS/BiOCl-OV) demonstrated remarkable efficiency (94.

View Article and Find Full Text PDF

Understanding the intricate interplay between disorder and superconductivity has become a key area of research in condensed matter physics, with profound implications for materials science. Recent studies have shown that spatial correlations of disorder potential can improve superconductivity, prompting a re-evaluation of some theoretical models. This paper explores the influence of disorder correlations on the fundamental properties of superconducting systems, going beyond the traditional assumption of spatially uncorrelated disorder.

View Article and Find Full Text PDF

The ferromagnetic resonance (FMR) spectra of oriented and non-oriented assemblies of linear magnetosome chains are calculated by solving the stochastic Landau-Lifshitz equation. The dependence of the shape of the FMR spectrum of a dilute assembly of chains on the particle diameter, the number of particles in a chain, the distance between the centers of neighboring particles, the mutual orientation of the cubic axes of particle anisotropy, and the value of the magnetic damping constant is studied. It is shown that FMR spectra of non-oriented chain assemblies depend on the average particle diameter at a fixed thickness of the lipid magnetosome membrane, as well as on the value of the magnetic damping constant.

View Article and Find Full Text PDF

We present a study of the intermolecular interactions in van der Waals complexes of methane and neon dimers within the framework of the CCSD method. This approach was implemented and applied to calculate and examine the behavior of the contracted two-particle reduced density matrix (2-RDM). It was demonstrated that the region near the minimum of the two-particle density matrix correlation part, corresponding to the primary bulk of the Coulomb hole contribution, exerts a significant influence on the dispersion interaction energetics of the studied systems.

View Article and Find Full Text PDF

Objective: To study 11C-methionine (MET) metabolism in gliomas using CNS tumor biobank imaging data.

Material And Methods: MRI and 11C-MET PET/CT were performed in 225 patients (49±14 years, M/F=84/101) according to standard protocols with analysis of 11C-MET accumulation index and volumetric parameters (V_FLAIR, V_PET and V_PET/FLAIR). These results were compared with molecular genetic testing and 2-year overall survival.

View Article and Find Full Text PDF

In this study, we present a novel and ultrasensitive magnetic lateral flow immunoassay (LFIA) tailored for the precise detection of zearalenone, a mycotoxin with significant implications for human and animal health. A versatile and straightforward method for creating non-covalent magnetic labels is proposed and comprehensively compared with a covalent immobilization strategy. We employ the magnetic particle quantification (MPQ) technique for precise detection of the labels and characterization of their functionality, including measuring the antibody sorption density on the particle surface.

View Article and Find Full Text PDF

Targeted medicine uses the distinctive features of cancer cells to find and destroy tumors. We present human epidermal growth factor receptor 2 (HER2)-targeted PLGA-chitosan nanoparticles for cancer therapy and visualization. Loading with two near-infrared (NIR) dyes provides imaging in the NIR transparency window and phototherapy triggered by 808 nm light.

View Article and Find Full Text PDF

In recent years, predictive methods for assessing the preservation of the parathyroid glands have been actively implemented. The article describes the first experience of evaluating the blood supply of the parathyroid glands by quantitative determination of the indocyanine green (ICG) accumulation index in real time in 6 patients before and after a thyroidectomy with central neck lymph node dissection for papillary thyroid cancer. Intraoperative fluorescent angiography was performed by using domestic equipment with a fluorescent module, as well as by using a domestic medication of ICG.

View Article and Find Full Text PDF

Thermal Conductivity Gas Sensors for High-Temperature Applications.

Micromachines (Basel)

January 2024

Institute of Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Highway 31, 115409 Moscow, Russia.

This paper describes a fast and flexible microfabrication method for thermal conductivity gas sensors useful in high-temperature applications. The key parts of the sensor, the microheater and the package, were fabricated from glass-coated platinum wire and the combination of laser micromilling (ablation) of already-sintered monolithic ceramic materials and thick-film screen-printing technologies. The final thermal conductivity gas sensor was fabricated in the form of a complete MEMS device in a metal ceramic package, which could be used as a compact miniaturized surface-mounted device for soldering to standard PCB.

View Article and Find Full Text PDF

In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations.

View Article and Find Full Text PDF

Magnetite nanoparticles (MNPs) are highly favored materials for a wide range of applications, from smart composite materials and biosensors to targeted drug delivery. These multifunctional applications typically require the biofunctional coating of MNPs that involves various conjugation techniques to form stable MNP-biomolecule complexes. In this study, a cost-effective method is developed for the chlorostannate modification of MNP surfaces that provides efficient one-step conjugation with biomolecules.

View Article and Find Full Text PDF

In this work, the nanostructure of oxide dispersion-strengthened steels was studied by small-angle neutron scattering (SANS), transmission electron microscopy (TEM), and atom probe tomography (APT). The steels under study have different alloying systems differing in their contents of Cr, V, Ti, Al, and Zr. The methods of local analysis of TEM and APT revealed a significant number of nanosized oxide particles and clusters.

View Article and Find Full Text PDF

Photonic Crystal Surface Mode Real-Time Imaging of RAD51 DNA Repair Protein Interaction with the ssDNA Substrate.

Biosensors (Basel)

January 2024

Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France.

Photonic crystals (PCs) are promising tools for label-free sensing in drug discovery screening, diagnostics, and analysis of ligand-receptor interactions. Imaging of PC surface modes has emerged as a novel approach to the detection of multiple binding events at the sensor surface. PC surface modification and decoration with recognition units yield an interface providing the highly sensitive detection of cancer biomarkers, antibodies, and oligonucleotides.

View Article and Find Full Text PDF

We've read with great interest the article by Smolinska et al. entitled "Stem Cells and Their Derivatives: An Implication for the Regeneration of Nonunion Fractures" regarding the recent scientific studies dealing with the treatment of nonunion fractures in clinical and preclinical settings using Mesenchymal Stem Cell (MSC)-based therapeutic techniques. Bone tissue regeneration is a dynamic process that involves the restoration of damaged or lost bone structure and function.

View Article and Find Full Text PDF

Unlabelled: Intravitreal injections (IVI) of vascular endothelial growth factor (VEGF) inhibitors are actively used in the treatment of various ophthalmic pathologies. In addition to the pronounced therapeutic effect of anti-VEGF drugs described in the literature, a number of data on adverse effects associated with the use of IVI, including from the lens, have now been accumulated. Prevention of possible side effects of this type of treatment requires further investigation.

View Article and Find Full Text PDF

The use of biocidal agents is a common practice for protection against biofouling in biomass-rich environments. In this paper, oligohexamethyleneguanidine (OHMG) polymer, known for its biocidal properties, was further modified with para-aminosalicylic acid (PAS) to enhance its properties against microorganisms coated with a lipid membrane. The structure of the product was confirmed by H NMR, C NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Background: The study is aimed at developing a method for monitoring photodynamic therapy (PDT) of a tumor using chlorin-type photosensitizers (PSs). Lack of monitoring of chlorin e6 (Cе6) photobleaching, hemoglobin oxygenation and blood flow during light exposure can limit the PDT effectiveness.

Materials And Methods: Phototheranostics includes spectral-fluorescence diagnostics of Ce6 distribution in the NIR range and PDT with simultaneous assessment of hemoglobin oxygenation and tumor blood flow.

View Article and Find Full Text PDF