9 results match your criteria: "National Research Council-Institute for Photonics and Nanotechnologies (CNR-IFN)[Affiliation]"

This work presents an innovative all-electrical platform for selective single-particle manipulation. The platform combines microfluidic impedance cytometry for label-free particle characterization and dielectrophoresis for contactless multi-way particle separation. The microfluidic chip has a straightforward coplanar electrode layout and no particle pre-focusing mechanism is required.

View Article and Find Full Text PDF

A novel approach for cost-effective and temporally resolved in-line combustion gas diagnostics based on spontaneous Stokes Raman spectroscopy is presented in this paper. The proposed instrument uses a multipass configuration designed to increase the scattering generation, giving information about gas species concentrations, including H and N that are not commonly available from analysis with absorption spectroscopy techniques. The system performs calibrated analysis providing both qualitative and quantitative information about the gas composition.

View Article and Find Full Text PDF

We investigate for the first time the compatibility of nanovials with microfluidic impedance cytometry (MIC). Nanovials are suspendable crescent-shaped single-cell microcarriers that enable specific cell adhesion, the creation of compartments for undisturbed cell growth and secretion, as well as protection against wall shear stress. MIC is a label-free single-cell technique that characterizes flowing cells based on their electrical fingerprints and it is especially targeted to cells that are naturally in suspension.

View Article and Find Full Text PDF

Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed.

View Article and Find Full Text PDF

Light-Induced Renormalization of the Dirac Quasiparticles in the Nodal-Line Semimetal ZrSiSe.

Phys Rev Lett

August 2020

Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

In nodal-line semimetals, linearly dispersing states form Dirac loops in the reciprocal space with a high degree of electron-hole symmetry and a reduced density of states near the Fermi level. The result is reduced electronic screening and enhanced correlations between Dirac quasiparticles. Here we investigate the electronic structure of ZrSiSe, by combining time- and angle-resolved photoelectron spectroscopy with ab initio density functional theory (DFT) complemented by an extended Hubbard model (DFT+U+V) and by time-dependent DFT+U+V.

View Article and Find Full Text PDF

The knowledge and the manipulation of light polarization state in the vacuum ultraviolet and extreme ultraviolet (EUV) spectral regions play a crucial role from materials science analysis to optical component improvements. In this paper, we present an EUV spectroscopic ellipsometer facility for polarimetry in the 90-160 nm spectral range. A single layer aluminum mirror to be used as a quarter wave retarder has been fully characterized by deriving the optical and structural properties from the amplitude component and phase difference δ measurements.

View Article and Find Full Text PDF

Microfluidic impedance cytometry offers a simple non-invasive method for single-cell analysis. Coplanar electrode chips are especially attractive due to ease of fabrication, yielding miniaturized, reproducible, and ultimately low-cost devices. However, their accuracy is challenged by the dependence of the measured signal on particle trajectory within the interrogation volume, that manifests itself as an error in the estimated particle size, unless any kind of focusing system is used.

View Article and Find Full Text PDF

Background And Aim: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease worldwide, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to cirrhosis, eventually leading to hepatocellular carcinoma (HCC). HCC ranks as the third highest cause of cancer-related death globally, requiring an early diagnosis of NAFLD as a potential risk factor. However, the molecular mechanisms underlying NAFLD are still under investigation.

View Article and Find Full Text PDF

The reconstitution of a complex microenvironment on microfluidic chips is one of the cornerstones to demonstrate the improved flexibility of these devices with respect to macroscale in vitro approaches. In this work, we realised an on-chip model to investigate the interactions between cancer and immune system. To this end, we exploited mice deficient (Knock Out, KO) for interferon regulatory factor 8 (IRF-8), a transcription factor essential for the induction of competent immune responses, to investigate how IRF-8 gene expression contributes to regulate immune and melanoma cells crosstalk.

View Article and Find Full Text PDF