89 results match your criteria: "National Research Centre Affiliation ID: 60014618[Affiliation]"
Int J Biol Macromol
December 2024
National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Pharmaceutical and drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
Skin wounds can drive global impacts, socially and economically, in parallel with their elevated incidence rate. Therefore, utilizing the dual-activity of Brassica Oleracea (Red Cabbage) extract, of being pH-sensitive and biologically active in designing novel, therapeutic, and pH-sensitive wound dressings with an easily stripped-off feature, is critical. Wound dressings were designed using two separate hydrogels based on chitosan (CS) and hydroxyethylcellulose (HEC), each loaded with RCE.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
The current study represents a unique fabrication strategy for preparation of fluorescent hydrogels via incorporation of fluorescent quantum dots (QDs) as fluorophore entities into chitosan as a gelling matrix. QDs identified as carbon quantum dots (CQDs) & nitrogen containing carbon quantum dots (NCQDs) were preliminary synthesized from cellulose nanocrystals (CNCs) and cationic cellulose nanocrystals (CCNCs), respectively. Cationic CNCs was prepared via chemical grafting with poly-di-allyl dimethyl ammonium chloride (CNCs-g-poly-DADMAC) through free chain polymerization reaction.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Pretreatment and Finishing of Cellulosic based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
Green routes for nucleation of nanostructures are recently applied for the biomedical applications, due to their affinity and feasibility. For instance, copper nanostructures are applicable for inhibition of microbial infections and ulcers. Hereby, this work is aimed at investigation for the possible contribution of Sidr honey (SH) in the formation of copper based-nanocomposites (Cu@SH).
View Article and Find Full Text PDFChem Biodivers
January 2025
Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
Herein, a one-pot reaction between cyclohexanone, thiourea, and 2,5-dimethoxybenzaldehyde allowed to prepare hexahydroquinazoline-2(1H)-thione4 firstly, which followed by reacting with hydrazine hydrate to produce the corresponding 2-hydrazinylhexahydroquinazoline 6. Interesting analogs of thiazolo[3,2-a]quinazoline 713 where obtained when hexahydroquinazoline-2(1H)-thione 4 reacted with 1,2-dibromoethane, chloroacetyl chloride, bromoacetic acid, bromoacetic acid/4-chlorobenzaldehyde, 2-bromopropionic acid, ethyl bromo cyanoacetate, and/or bromomalononitrile; respectively. While triazolo[4,3-a] quinazoline 14-16 were created when 2-hydrazinylhexahydroquinazoline 6 reacted with triethyl orthoformate, acetic anhydride, and carbon disulfide respectively.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
The accumulation of uremic toxins in the human body poses a deadly risk because it causes chronic kidney disease. To increase the effectiveness of hemodialysis and raise the survival rate, these toxins must be effectively removed from the bloodstream. Developing effective materials for removing these dangerous substances requires a thorough understanding of the interactions between an adsorbent and the uremic toxins.
View Article and Find Full Text PDFPlant Physiol Biochem
June 2024
Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt. Electronic address:
The challenge of desert farming with a high salt level has become an ecological task due to salt stress negatively affecting plant growth and reproduction. The current study deals with the cultivation of sorghum under salt stress conditions to counteract the effect of chitosan and gibberellic acid (GA). Here, the effects of chitosan, GA and nano-composite (GA@chitosan) on biochemical contents, growth and seed yield of sorghum under salinity stress conditions were studied.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2024
Department of Chemistry, Faculty of Science, University of Hail, Hail, Saudi Arabia.
Saudi Arabia (SA) is one of the world's arid, most water-scarce nations without permanent water resources. The purpose of this article is to provide a comprehensive overview of Saudi Arabia's water resources availability and reliability in terms of water supply, demand, and the major challenges that water faces. Saudi has an annual water supply of roughly 89.
View Article and Find Full Text PDFSci Rep
April 2024
Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
Nanofibers are investigated to be superiorly applicable in different purposes such as drug delivery systems, air filters, wound dressing, water filters, and tissue engineering. Herein, polyacrylonitrile (PAN) is thermally treated for autocatalytic cyclization, to give optically active PAN-nanopolymer, which is subsequently applicable for preparation of nanofibers through solution blow spinning. Whereas, solution blow spinning is identified as a process for production of nanofibers characterized with high porosity and large surface area from a minimum amounts of polymer solution.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2024
Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
To effectively remove pharmaceuticals, nitroaromatic compounds, and dyes from wastewater, an efficient multifunctional material was created based on silver nanoparticles (Ag) and MIL-125-NH (MOF) immobilized on viscose fibers (VF) as a support substrate. Firstly, silver nanoparticles (Ag) were immobilized on the surface of viscose fibers (VF) via in situ synthesis using trisodium citrate (TSC) as a reducing agent to create (VF-Ag). Then, VF and VF-Ag were decorated with the titanium metal-organic framework MIL-125-NH (MOF) to create VF-MOF and VF-Ag-MOF.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt. Electronic address:
Chitosan-based aerogels were fabricated through utilizing of nanofibrillated cellulose (NFC)/CaCO composites. Chitosan aerogel and extra three aerogels loaded different concentrations of NFC/CaCO were investigated to explore their release efficiency of Tebuconazole pesticides. Results obtained from ATR-FTIR showed a remarkable decline of the characterized chitosan hydroxyl group peak prolonging with appearance of new peaks assigned to the inclusion of inorganic calcium element.
View Article and Find Full Text PDFCarbohydr Polym
January 2024
Department of Pretreatment and Finishing of Cellulosic Fibers, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt. Electronic address:
Since the beginning of 21th century, nanoscience and nanotechnology become the most promising topics in various fields, attributing to the superior characters of nanoscaled structures. The conventional quantum dots are substituted with new family of luminescent nanostructures, owing to their interchanged optical properties, low-cost of fabrication, biocompatibility, non-toxicity, ecofriendly, hydrophilicity and superior chemical stability. Carbon quantum dots (CQDs) were recently investigated for their simple synthesis, bio-consonance, and different revelation applicability.
View Article and Find Full Text PDFSci Rep
September 2023
Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
Chlorophyll-a as pigments, exist in the green organelles for plants that act in photosynthesis. Different studies were considered with demonstration of an effective separation technique of Chlorophyll-a without decomposition; however, the reported methods were disadvantageous with expensiveness and low quantum yield. The current work uniquely represents an investigative method for the separation of Chlorophyll-a from spinach extract using cellulosic hybrids based on ZIF-8 @cellulosic fibers (Zn-zeolitic imidazolate frameworks@cellulosic fibers) as a cost effective and recyclable absorbents.
View Article and Find Full Text PDFPolymers (Basel)
July 2023
National Research Centre (Scopus Affiliation ID 60014618), Textile Research and Technology Institute, Pretreatment, and Finishing of Cellulose-Based Fibres Department, 33 El-Behouth St. (Former El-Tahrir Str.), Dokki, Giza P.O. Box 12622, Egypt.
This work examined the functional properties of three different treated fabrics, cotton, polyester, and cotton/polyester, with different polymeric materials (polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), or chitosan) in the presence and absence of two synthesized metal nanoparticles to impart and enhance fabric properties. Both metal nanoparticles (silver nanoparticle (AgNPs) and Zinc oxide nanoparticles (ZnONPs)) were synthesized using Leaves and characterized using different techniques. The different treated fabrics were dyed with Reactive Dye (Syozol red k-3BS) and evaluated for their color strength, fastness properties, ultraviolet protection, antimicrobial activity, and mechanical properties.
View Article and Find Full Text PDFInt J Biol Macromol
September 2023
National Research Centre (NRC, Scopus affiliation ID 60014618), Textile Research and Technology Institute (TRTI), Pre-treatment and Finishing of Cellulose-based Fibers Department (PFCFD), El-Behouth St. (former El-Tahrir str.), Dokki, P.O. 12622 Giza, Egypt.
Rice straw waste was used to extract natural cellulose fibers, which was then chemically converted to cellulose gel. Both extracted cellulose and modified cellulose (gel) were characterized using different techniques and used for biosorption of b+arium, manganese, cobalt, nickel, copper, zinc, and cadmium. Both celluloses' chemical compositions were investigated.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2023
Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt. Electronic address:
The behavior of multi-walled carbon nanotubes (MWCNTs) and titanium dioxide nanoparticles (TiO NPs) as plant growth enhancers was still unclear; however, in this study, the effects of MWCNTs, TiONPs, 5%TiO@MWCNTs, 10%TiO@MWCNTs and 15%TiO@MWCNTs on physical and biochemical contents in Sesamum indicum L. under heat stress conditions were studied. The content of malondialdehyde (MDA) and hydrogen peroxide (HO) concentrations were reduced by the spraying MWCNTs and TiO NPs on plants.
View Article and Find Full Text PDFDiscov Nano
May 2023
Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
Microbial resistance is the first morbidity and mortality cause for patients as usually a secondary infection. Additionally, the MOF is a promising material that shows a nice activity in this field. However, these materials need a good formulation to enhance biocompatibility and sustainability.
View Article and Find Full Text PDFInt J Biol Macromol
June 2023
Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
The application of newly formulated beads from copper-benzenetricarboxylate (Cu-BTC), polyacrylonitrile (PAN), and chitosan (C), Cu-BTC@C-PAN, C-PAN, and PAN, for the removal of phenolic chemicals from water, is described in the current paper. Phenolic compounds (4-chlorophenol (4-CP) and 4-nitrophenol (4-NP)) were adsorbed using beads and the adsorption optimization looked at the effects of several experimental factors. The Langmuir and Freundlich models were used to explain the adsorption isotherms in the system.
View Article and Find Full Text PDFCellulose (Lond)
March 2023
Pre-treatment and Finishing of Cellulosic Fibers Department, Textile Industries Research Institute, National Research Centre, Dokki, Giza, 12622 Egypt.
In this work, new chitosan derivative nanofibers that exhibit antibacterial properties were successfully fabricated. The two CS Schiff base derivatives (CS-APC and CS-2APC) were prepared by incorporating 4-amino antipyrine moiety in two different ratios, followed by a reductive amination to obtain the corresponding derivatives CS-APCR and CS-2APCR. Spectral analyses were used to confirm the chemical structure.
View Article and Find Full Text PDFBMC Plant Biol
November 2022
Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
Calcareous soil contains many problems such as the lack of sources of major and minor elements that are useful for plant growth and development. Plant extracts and nanoparticles are very popular as biostimulants in plant production. Here, the effect of aqueous, non-aqueous and alcoholic oat extracts on the growth, biochemical response of oats leaves and grains grown in experimental fields under new reclamation lands were studied.
View Article and Find Full Text PDFInt J Biol Macromol
January 2023
Department of Pretreatment and Finishing of Cellulosic based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt. Electronic address:
Polymer dots (PDs) ingrained from biopolymers are characterized by their biocompatibility & non-toxicity to be superiorly applicable for biomedicines. The point of novelty in the current study is to focus on the effect of Maillard reaction for conjugation of chitosan with glucose to enhance the affinity of chitosan as a biological resource of PDs. Chitosan-glucose conjugate was firstly prepared by Maillard reaction.
View Article and Find Full Text PDFRSC Adv
September 2021
INRAE, UR1268 Biopolymeres Interactions Assemblages 44316 Nantes France.
This study describes for the first time the preparation of re-dispersible surfactant-free dry eicosane oil emulsion using cellulose nanocrystals (CNCs) using the freeze-drying technique. Surface properties of CNCs constitute a critical point for the stability of o/w emulsions and thus can affect both the droplet size and dispersion properties of the emulsion. Therefore, surface modification of CNCs was performed to understand its effect on the size of the obtained re-dispersible dry o/w eicosane emulsion.
View Article and Find Full Text PDFInt J Biol Macromol
June 2022
Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
Herein, a newly developed approach for durable antibacterial cotton fabrics coated carboxymethyl chitosan (CMCs) via ionic crosslinking driven by cationization of cotton surface (CC) with 3-chloro-2-hydroxyl propyl-trimethyl ammonium chloride (CHTAC) was achieved. In this regard, the novelty was extended to impart a highly antibacterial activity through harnessing of the as-functionalized CMCs/CC for in situ preparation of AgNPs, without using of hazardous reductants. The antibacterial activity of the in situ prepared AgNPs onto CMCs/CC as well as the in vivo study on the rat lab were investigated to evaluate their healing efficiency, pathological tissues and biomarkers.
View Article and Find Full Text PDFBMC Chem
April 2022
Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
It is critical to take safety action if carcinogenic heavy metals and ammonia can be detected quickly, cheaply, and selectively in an environmental sample. As a result, compound 4a [4-(1-(2-(2,4-Dinitrophenyl)hydrazineylidene)-3-(naphthalen-2-yl)allyl)-5-methyl-1-phenyl-1 H-1,2,3-triazole] and compound 4b [4-(1-(2-(2,4-Dinitrophenyl)hydrazineylidene)-3-(naphthalen-2-yl)allyl)-1-(4-fluorophenyl)-5-methyl-1 H-1,2,3-triazole] were prepared. The aldol condensation process of 4-acetyl-1,2,3-triazoles 1a,b (Ar = CH; 4-FCH) with 2-naphthaldehyde yields 1-acetyl-1,2,3-triazoles 1a,b (Ar = CH; 4-FCH) (5-methyl-1-aryl-1 H-1,2,3-triazol-4-yl) -3-(naphthalen-2-yl)prop-2-en-1-ones 3a,b with a yield of around 95%.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2022
Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt.
Paracetamol is a ubiquitous drug used by animals and humans but is not fully metabolized within their bodies, and thus often finds its way into raw wastewater. This study represents a new class of adsorbent nanocomposite with high adsorption capacity towards paracetamol removal. Herein, both the kinetic study and the removal of paracetamol from aqueous solutions were investigated in terms of diverse CaCO/nanocellulose composites with different surface charges and different particle sizes.
View Article and Find Full Text PDF