842 results match your criteria: "National Research Centre "Kurchatov Institute" 1[Affiliation]"

The potential of standard methods of radiation therapy is limited by the dose that can be safely delivered to the tumor, which could be too low for radical treatment. The dose efficiency can be increased by using radiosensitizers. In this study, we evaluated the sensitizing potential of biocompatible iron oxide nanoparticles coated with a dextran shell in A172 and Gl-Tr glioblastoma cells in vitro.

View Article and Find Full Text PDF

A highly efficient synthetic approach was developed for the synthesis of unsymmetrical 1,10-phenanthroline-2,9-diamides with two different substituents in the fourth and seventh positions of the phenanthroline core. The structures of these ligands were confirmed using various spectral methods including 2D-NMR and X-ray analysis. Quantum chemical calculations supported the presence of tautomeric forms of these ligands.

View Article and Find Full Text PDF

The understanding of structural defects in basal-faceted sapphire ribbons was improved through X-ray imaging at a synchrotron source. The combination of phase contrast and X-ray diffraction makes it possible to visualize and characterize both gas voids and dislocations in the bulk of the ribbons grown by the Stepanov-LaBelle technology. Dislocations were directly related to gas voids.

View Article and Find Full Text PDF

Formation of carbon propeller-like molecules (CPLMs) from starphenes on a graphene substrate under electron irradiation with about 100% yield is observed in molecular dynamics simulations using the REBO-1990EVC_CH potential and CompuTEM algorithm. A CPLM consists of three carbon atomic chains connected to the central hexagon and is formed as a result of the spontaneous breaking of bonds between zigzag atomic rows in starphene arms after hydrogen removal by electron impacts. In the absence of the substrate, the CPLM yield is slightly decreased due to sticking between forming chains, while the formation time is increased threefold.

View Article and Find Full Text PDF

[KE peptide regulates SIRT1, PARP1, PARP2 gene expression and protein synthesis in human mesenchymal stem cells aging.].

Adv Gerontol

October 2023

A.N.Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 1 Leninskiye gori, Moscow 119992, Russian Federation.

It was shown that KE peptide (Lys-Glu, vilon) has immunomodulatory, oncostatic and geroprotective effects. The aim of this work is to evaluate the effect of the KE peptide on gene expression and protein synthesis of SIRT1, PARP1, PARP2 during aging of human mesenchymal stem cells (MSC). The KE peptide increased gene expression and synthesis of the SIRT1 protein in «young» MSCs by 6 and 8,2 times, respectively.

View Article and Find Full Text PDF

This study reports a novel family of cage manganesesilsesquioxanes prepared via complexation with bathophenanthroline (4,7-diphenyl-1,10-phenanthroline). The resulting Mn-, MnLi-, and MnNa-compounds exhibit several unprecedented cage metallasilsesquioxane structural features, including intriguing self-assembly of silsesquioxane ligands. Complexes were tested for fungicidal activity against seven classes of phytopathogenic fungi.

View Article and Find Full Text PDF

A quantum memristor combines the memristive dynamics with the quantum behavior of the system. We analyze the idea of a quantum memristor based on ultracold ions trapped in a Paul trap. Corresponding input and output memristor signals are the ion electronic levels populations.

View Article and Find Full Text PDF

RNA-Seq Virus Fraction in Lake Baikal and Treated Wastewaters.

Int J Mol Sci

July 2023

Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia.

In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake.

View Article and Find Full Text PDF
Article Synopsis
  • 11-Indeno[1,2-]quinoxalin-11-one oxime and tryptanthrin-6-oxime are identified as effective inhibitors of the c-Jun N-terminal kinase 3 (JNK-3), which have neuroprotective and anti-inflammatory properties.
  • The stereochemical configuration of the oxime carbon-nitrogen double bond in these compounds, previously unknown, was determined using single crystal X-ray diffraction and NMR techniques.
  • Results indicate that both compounds have the -configuration in both solid state and solution, stabilized by intermolecular hydrogen bonds, opposing the earlier assumption of a -configuration reliant on intramolecular hydrogen bonds.
View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is one of the most severe brain diseases. Animal models with anesthesia are actively used to study stroke genomics and pathogenesis. However, the anesthesia-related gene expression patterns of ischemic rat brains remain poorly understood.

View Article and Find Full Text PDF

Ischemic stroke is an acute local decrease in cerebral blood flow due to a thrombus or embolus. Of particular importance is the study of the genetic systems that determine the mechanisms underlying the formation and maintenance of a therapeutic window (a time interval of up to 6 h after a stroke) when effective treatment can be provided. Here, we used a transient middle cerebral artery occlusion (tMCAO) model in rats to study two synthetic derivatives of adrenocorticotropic hormone (ACTH).

View Article and Find Full Text PDF

RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes.

Curr Issues Mol Biol

July 2023

Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.

Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs.

View Article and Find Full Text PDF

The properties of the complexes I@C(OH) and I@C(OH) have been determined using the quantum chemical DFT PBE0 method to assess the possibility of synthesis of highly hydroxylated fullerene -iodides for the use in radiotherapy of different organs. The arrangement of the hydroxyl groups corresponds to the location of halogen atoms in ()-CF and ()-CCl. Negative-charged iodine is localized in the center of the fullerene cavity and has no significant influence on the IR spectra of hydroxylated fullerenes.

View Article and Find Full Text PDF

The method of precise cutting of 2D materials by simultaneous action of a catalyst at the tip of the scanning microscope probe and an electron beam in a high-resolution transmission electron microscope is proposed and studied using atomistic simulations by the example of graphene and a nickel catalyst. Reactive molecular dynamics simulations within the Compu-TEM approach for the description of electron impact effects show that the combination of the nickel catalyst and electron irradiation is crucial for graphene cutting. Cuts with straight edges with widths of about 1-1.

View Article and Find Full Text PDF

Pharmaceuticals including antibiotics are among the hazardous micropollutants (HMP) of the environment. Incomplete degradation of the HMP leads to their persistence in water bodies causing a plethora of deleterious effects. Conventional wastewater treatment cannot remove HMP completely and a promising alternative comprises biotechnologies based on microalgae.

View Article and Find Full Text PDF

Chalcogenide vitreous semiconductors (ChVSs) find application in rewritable optical memory storage and optically switchable infrared photonic devices due to the possibility of fast and reversible phase transitions, as well as high refractive index and transmission in the near- and mid-infrared spectral range. Formed on such materials, laser-induced periodic surface structures (LIPSSs), open wide prospects for increasing information storage capacity and create polarization-sensitive optical elements of infrared photonics. In the present work, a possibility to produce LIPSSs under femtosecond laser irradiation (pulse duration 300 fs, wavelength 515 nm, repetition rate up to 2 kHz, pulse energy ranged 0.

View Article and Find Full Text PDF

We present measurements of the cross section and double-helicity asymmetry A_{LL} of direct-photon production in p[over →]+p[over →] collisions at sqrt[s]=510  GeV. The measurements have been performed at midrapidity (|η|<0.25) with the PHENIX detector at the Relativistic Heavy Ion Collider.

View Article and Find Full Text PDF

Linalool is a pleasant-smelling monoterpenoid widely found in the essential oils of most flowers. Due to its biologically active properties, linalool has considerable commercial potential, especially in the food and perfume industries. In this study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce linalool de novo.

View Article and Find Full Text PDF

Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe O /Mn O core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented.

View Article and Find Full Text PDF

Polymorphism is a common phenomenon among single- and multicomponent molecular crystals that has a significant impact on the contemporary drug development process. A new polymorphic form of the drug carbamazepine (CBZ) cocrystal with methylparaben (MePRB) in a 1:1 molar ratio as well as the drug's channel-like cocrystal containing highly disordered coformer molecules have been obtained and characterized in this work using various analytical methods, including thermal analysis, Raman spectroscopy, and single-crystal and high-resolution synchrotron powder X-ray diffraction. Structural analysis of the solid forms revealed a close resemblance between novel form II and previously reported form I of the [CBZ + MePRB] (1:1) cocrystal in terms of hydrogen bond networks and overall packing arrangements.

View Article and Find Full Text PDF

Perovskite solar cells represent the most attractive emerging photovoltaic technology, but their practical implementation is limited by solar cell devices' low levels of operational stability. The electric field represents one of the key stress factors leading to the fast degradation of perovskite solar cells. To mitigate this issue, one must gain a deep mechanistic understanding of the perovskite aging pathways associated with the action of the electric field.

View Article and Find Full Text PDF

A reaction of acyl chlorides derived from 1,10-phenanthroline-2,9-dicarboxylic acids with piperazine allows the preparation of the corresponding 24-membered macrocycles in good yield. The structural and spectral properties of these new macrocyclic ligands were thoroughly investigated, revealing promising coordination properties towards f-elements (Am, Eu). It was shown that the prepared ligands can be used for selective extraction of Am(III) from alkaline-carbonate media in presence of Eu(III) with an SF up to 40.

View Article and Find Full Text PDF

In the present work, complexes of DNA with nano-clay montmorillonite (Mt) were investigated by means of atomic force microscopy (AFM) under various conditions. In contrast to the integral methods of analysis of the sorption of DNA on clay, AFM allowed us to study this process at the molecular level in detail. DNA molecules in the deionized water were shown to form a 2D fiber network weakly bound to both Mt and mica.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses the growing interest in improving proton therapy (PT) methods in radiation oncology to enhance their biological effectiveness.
  • - It highlights the use of binary technologies that enhance proton radiation's damaging effect by selectively targeting radiosensitizers to specific tissues.
  • - The review focuses on proton boron capture therapy (PBCT), which aims to increase tumor dose by using a reaction between protons and boron isotopes, generating three alpha particles, and summarizes relevant theoretical and experimental studies.
View Article and Find Full Text PDF

This study presents preparing and characterization of polyacrylonitrile (PAN) fibers containing various content of tetraethoxysilane (TEOS) incorporated via mutual spinning solution or emulsion using wet and mechanotropic spinning methods. It was shown that the presence of TEOS in dopes does not affect their rheological properties. The coagulation kinetics of complex PAN solution was investigated by optical methods on the solution drop.

View Article and Find Full Text PDF