17 results match your criteria: "National Research Center «Kurchatov Institute» - Institute of Molecular Genetics[Affiliation]"

Methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases.

DNA Repair (Amst)

September 2024

Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow 123182,  Russia; Institute of Gene Biology of Russian Academy of Sciences, Moscow 119334, Russia. Electronic address:

Epigenetic cytosine methylation covers most of genomic CpG dinucleotides in human cells. In addition to common deamination-mediated mutagenesis at CpG sites, an alternative deamination-independent pathway associated with DNA polymerase activity was previously described. This mutagenesis is characterized by the TCG→TTG mutational signature and is believed to arise from dAMP misincorporation opposite 5-methylcytosine (mC) or its oxidized derivative 5-hydroxymethylcytosine (hmC) by B-family replicative DNA polymerases with disrupted proofreading 3→5'-exonuclease activity.

View Article and Find Full Text PDF

Emerging and re-emerging viruses periodically cause outbreaks and epidemics around the world, which ultimately lead to global events such as the COVID-19 pandemic. Thus, the urgent need for new antiviral drugs is obvious. Over more than a century of antiviral development, nucleoside analogs have proven to be promising agents against diversified DNA and RNA viruses.

View Article and Find Full Text PDF

Farm animals are a natural reservoir of commensal and pathogenic strains with high zoonotic potential. Here, we present five complete genomes of strains isolated from healthy animals and animals with colisepticemia from farms in Russia. The strains contain diverse virulence-associated and antibiotic resistance genes and multiple plasmids.

View Article and Find Full Text PDF

The SARS-CoV-2 betacoronavirus pandemic has claimed more than 6.5 million lives and, despite the development and use of COVID-19 vaccines, remains a major global public health problem. The development of specific drugs for the treatment of this disease remains a very urgent task.

View Article and Find Full Text PDF

The chromatin interaction assays, particularly Hi-C, enable detailed studies of genome architecture in multiple organisms and model systems, resulting in a deeper understanding of gene expression regulation mechanisms mediated by epigenetics. However, the analysis and interpretation of Hi-C data remain challenging due to technical biases, limiting direct comparisons of datasets obtained in different experiments and laboratories. As a result, removing biases from Hi-C-generated chromatin contact matrices is a critical data analysis step.

View Article and Find Full Text PDF

The life cycle of severe acute respiratory syndrome coronavirus 2 includes several steps that are supposedly mediated by liquid-liquid phase separation (LLPS) of the viral nucleocapsid protein (N) and genomic RNA. To facilitate the rational design of LLPS-targeting therapeutics, we modeled N-RNA biomolecular condensates in vitro and analyzed their sensitivity to several small-molecule antivirals. The model condensates were obtained and visualized under physiological conditions using an optimized RNA sequence enriched with N-binding motifs.

View Article and Find Full Text PDF

Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor.

View Article and Find Full Text PDF

Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly , canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes.

View Article and Find Full Text PDF

Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs).

View Article and Find Full Text PDF
Article Synopsis
  • Natural melanocortins (MCs), like Semax and ACTH(6-9)PGP, have shown potential in developing drugs with neuroprotective effects, particularly during stress.
  • In an experiment with rats, both MC derivatives were found to reduce behavioral changes caused by acute restraint stress (ARS) when administered beforehand.
  • RNA sequencing revealed that Semax affected over 1500 genes while ACTH(6-9)PGP affected fewer than 400, highlighting how these peptides help normalize gene expression disrupted by stress, particularly in the hippocampus.
View Article and Find Full Text PDF

The Semax (Met-Glu-His-Phe-Pro-Gly-Pro) peptide is a synthetic melanocortin derivative that is used in the treatment of ischemic stroke. Previously, studies of the molecular mechanisms underlying the actions of Semax using models of cerebral ischemia in rats showed that the peptide enhanced the transcription of neurotrophins and their receptors and modulated the expression of genes involved in the immune response. A genome-wide RNA-Seq analysis revealed that, in the rat transient middle cerebral artery occlusion (tMCAO) model, Semax suppressed the expression of inflammatory genes and activated the expression of neurotransmitter genes.

View Article and Find Full Text PDF

Due to its nootropic, neuroprotective, and immunomodulatory effects, the peptide Semax is utilized in the treatment of ischemic stroke. Our earlier RNA-Seq analysis of the transcriptome in an ischemic model of transient occlusion of the middle cerebral artery showed an increase in the mRNA levels of many proinflammatory genes, and the suppression of their induction by Semax. However, for many relevant genes, including Il1a, Il1b, Il6 and Tnfa, the levels of their expression were too low for detailed quantitative evaluation.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a heterogeneous disease affecting one out of five individuals and is the leading cause of disability worldwide. Presently, MDD is considered a multifactorial disease with various causes such as genetic susceptibility, stress, and other pathological processes. Multiple studies allowed the formulation of several theories attempting to describe the development of MDD.

View Article and Find Full Text PDF

Stabilized melanocortin analog peptide ACTH(6-9)PGP (HFRWPGP) possesses a wide range of neuroprotective activities. However, its mechanism of action remains poorly understood. In this paper, we present a study of the proproliferative and cytoprotective activity of the adrenocorticotropic hormone fragment 6-9 (HFRW) linked with the peptide prolyine-glycyl-proline on the SH-SY5Y cells in the model of oxidative stress-related toxicity.

View Article and Find Full Text PDF

Human primase and DNA polymerase PrimPol re-starts stalled replication forks by repriming downstream DNA lesions and protects cells against DNA damage. Structure of the catalytic core of PrimPol with DNA primer, template and incoming dATP was solved but the mechanisms of DNA polymerase and primase activities of PrimPol are not fully understood. In this work, using site-directed mutagenesis we biochemically analyzed the role of active site residues Arg47 and Arg76 contacting DNA template in DNA polymerase and primase activities of PrimPol.

View Article and Find Full Text PDF

The prominent protective effects in diverse neuron injury paradigms exerted by cannabinoids and in particular their endogenously produced species render the endocannabinoid system a promising molecular target in the treatment of neurodegenerative diseases. However, the effects of individual endocannabinoids in human cells remain poorly investigated. Neural derivatives of human induced pluripotent stem cells (iPSC) offer unique opportunities for studying the neuroprotective compounds and development of patient-specific treatment.

View Article and Find Full Text PDF