898 results match your criteria: "National Research Center "Kurchatov Institute[Affiliation]"

Introduction: It has been recognized that capripoxvirus infections have a strong cutaneous tropism with the manifestation of skin lesions in the form of nodules and scabs in the respective hosts, followed by necrosis and sloughing off. Considering that the skin microbiota is a complex community of commensal bacteria, fungi and viruses that are influenced by infections leading to pathological states, there is no evidence on how the skin microbiome is affected during capripoxvirus pathogenesis.

Methods: In this study, shotgun metagenomic sequencing was used to investigate the microbiome in pox lesions from hosts infected with lumpy skin disease virus and sheep pox virus.

View Article and Find Full Text PDF

The high brightness and photostability of the green fluorescent protein StayGold make it a particularly attractive probe for long-term live-cell imaging; however, its dimeric nature precludes its application as a fluorescent tag for some proteins. Here, we report the development and crystal structures of a monomeric variant of StayGold, named mBaoJin, which preserves the beneficial properties of its precursor, while serving as a tag for structural proteins and membranes. Systematic benchmarking of mBaoJin against popular green fluorescent proteins and other recently introduced monomeric and pseudomonomeric derivatives of StayGold established mBaoJin as a bright and photostable fluorescent protein, exhibiting rapid maturation and high pH/chemical stability.

View Article and Find Full Text PDF

The OCT4 transcription factor is necessary to maintain cell stemness in the early stages of embryogenesis and is involved in the formation of induced pluripotent stem cells, but its role in oncogenesis is not yet entirely clear. In this work, expression was investigated in malignant gliomas. Twenty glioma cell lines and a sample of normal adult brain tissue were used.

View Article and Find Full Text PDF

The heterochromatin position effect is manifested in the inactivation of euchromatin genes transferred to heterochromatin. In chromosomal rearrangements, genes located near the new eu-heterochromatin boundary in the rearrangement (cis-inactivation) and, in rare cases, genes of a region of the normal chromosome homologous to the region of the eu-heterochromatin boundary of the chromosome with the rearrangement (trans-inactivation) are subject to inactivation. The In(2)A4 inversion is able to trans-inactivate the UAS-eGFP reporter gene located on the normal chromosome.

View Article and Find Full Text PDF

Intrinsic 2D magnets have recently been established as a playground for studies on fundamentals of magnetism, quantum phases, and spintronic applications. The inherent instability at low dimensionality often results in coexistence and/or competition of different magnetic orders. Such instability of magnetic ordering may manifest itself as phase-separated states.

View Article and Find Full Text PDF

Transmetalation of the bis{triethylantimony(V)}-capped iron(II) tris-α-dioximate with -butylboronic acid afforded the mixed antimony, boron cross-linked clathrochelate with single reactive antimony(V)-based apical fragment. This macrobicyclic precursor easily underwent the transmetalation reactions with germanium and titanium(IV) alkoxides to give the rod-like and angular FeM-trinuclear bis-clathrochelates. Those of the aforementioned diantimony(V)-capped complex with 3- and 4-carboxyphenylboronic acids afforded the monoboron-capped iron(II) semiclathrochelates, undergoing a double-cyclization (macrobicyclization) with germanium- and titanium(IV)-based capping agents.

View Article and Find Full Text PDF

Exotic Dark Matter Search with the Majorana Demonstrator.

Phys Rev Lett

January 2024

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

With excellent energy resolution and ultralow-level radiogenic backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable searches for several classes of exotic dark matter (DM) models. In this work, we report new experimental limits on keV-scale sterile neutrino DM via the transition magnetic moment from conversion to active neutrinos ν_{s}→ν_{a}. We report new limits on fermionic dark matter absorption (χ+A→ν+A) and sub-GeV DM-nucleus 3→2 scattering (χ+χ+A→ϕ+A), and new exclusion limits for bosonic dark matter (axionlike particles and dark photons).

View Article and Find Full Text PDF

The results of a study of the structural and reflective characteristics of short-period multilayer X-ray mirrors based on Mo/BC at wavelengths 1.54 Å, 9.89 Å and 17.

View Article and Find Full Text PDF

Background: Mutations in the glucocerebrosidase () and leucine-rich repeat kinase 2 () genes, encoding lysosomal enzyme glucocerebrosidase (GCase) and leucine-rich repeat kinase 2 (LRRK2), respectively, are the most common related to Parkinson's disease (PD). Recent data suggest a possible functional interaction between GCase and LRRK2 and their involvement in sphingolipid metabolism. The aim of the present study was to describe the clinical course and evaluate the lysosomal enzyme activities and sphingolipid concentrations in blood of patients with PD associated with dual mutations p.

View Article and Find Full Text PDF

The intermolecular aggregation between the solvent and organic molecules is covered in the current article. 4,4'-(Buta-1,3-diyne-1,4-diyl)dibenzoic acid (DADBA) was used as an organic molecule and dimethyl sulfoxide (DMSO) as a solvent to create the target compound DADBA-DMSO. The material's hydrogen bonding and intermolecular aggregation were determined by appropriate characterization methods, including single-crystal X-ray diffraction (XRD), Fourier-transform infrared (FTIR), photoluminescence (PL), and cyclic voltammetry (CV) analysis.

View Article and Find Full Text PDF

One of the most promising applications of FeNiCoCrMoAl-based high-entropy alloy is the fabrication of protective coatings. In this work, gas-atomized powder of FeNiCoCrMoAl composition was deposited via high-velocity oxygen fuel spraying. It was shown that in-flight oxidation of the powder influences the coating's phase composition and properties.

View Article and Find Full Text PDF

By reacting a series of 2,6-diacetylpyridine bis-hydrazones containing pyrimidine (H2L1), benzimidazole (H2L2) and phthalazine (H2L3) heterocyclic fragments with copper(II) chloride and bromide, a variety of pentacoordinated complexes of the composition , and , where X = Cl, Br, are formed. The properties and structure of the compounds were studied by means of NMR, IR, UV-vis, ESR, and X-ray absorption spectroscopy, cyclic voltammetry and X-Ray single crystal diffraction methods. It was shown that complexes of the cationic type have an asymmetric structure with a distorted square-pyramidal geometry of the coordination unit.

View Article and Find Full Text PDF

Oxidative stress is involved in a wide range of age-related diseases. A critical role has been proposed for mitochondrial oxidative stress in initiating or promoting these pathologies and the potential for mitochondria-targeted antioxidants to fight them, making their search and testing a very urgent task. In this study, the mitochondria-targeted antioxidants SkQ1, SkQ3 and MitoQ were examined as they affected isolated rat liver mitochondria and yeast cells, comparing SkQ3 with clinically tested SkQ1 and MitoQ.

View Article and Find Full Text PDF

Atherosclerotic plaques are sites of chronic inflammation with diverse cell contents and complex immune signaling. Plaque progression and destabilization are driven by the infiltration of immune cells and the cytokines that mediate their interactions. Here, we attempted to compare the systemic cytokine profiles in the blood plasma of patients with atherosclerosis and the local cytokine production, using ex vivo plaque explants from the same patients.

View Article and Find Full Text PDF

In this work, the nanostructure of oxide dispersion-strengthened steels was studied by small-angle neutron scattering (SANS), transmission electron microscopy (TEM), and atom probe tomography (APT). The steels under study have different alloying systems differing in their contents of Cr, V, Ti, Al, and Zr. The methods of local analysis of TEM and APT revealed a significant number of nanosized oxide particles and clusters.

View Article and Find Full Text PDF

Opportunities for fundamental physics research with radioactive molecules.

Rep Prog Phys

July 2024

School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People's Republic of China.

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.

View Article and Find Full Text PDF

Unprecedented iron-based silsesquioxane/acetylacetonate complexes were synthesized. The intriguing cage-like structure of compounds is alkaline metal-dependent: the FeLi complex includes condensed Si-silsesquioxane and four acetylacetonate ligands; the FeNa complex exhibits two cyclic Si-silsesquioxane and eight acetylacetonate ligands, while the FeK complex features two cyclic Si-silsesquioxane and six acetylacetonate ligands. The latter case is the very first observation of small trimeric silsesquioxane ligands in the composition of cage-like metallasilsesquioxanes.

View Article and Find Full Text PDF

The PBAF chromatin remodeling complex of the SWI/SNF family plays a critical role in the regulation of gene expression during tissue differentiation and organism development. The subunits of the PBAF complex have domains responsible for binding to N-terminal histone sequences. It determines the specificity of binding of the complex to chromatin.

View Article and Find Full Text PDF

The North Caucasus played a key role during the ancient colonization of Eurasia and the formation of its cultural and genetic ancestry. Previous archeogenetic studies described a relative genetic and cultural continuity of ancient Caucasus societies, since the Eneolithic period. The Koban culture, which formed in the Late Bronze Age on the North Caucasian highlands, is considered as a cultural "bridge" between the ancient and modern autochthonous peoples of the Caucasus.

View Article and Find Full Text PDF

Synthesis and properties of nano-cadmium oxide and its size-dependent responses by barley plant.

Environ Res

April 2024

Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia; Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China.

Present study included technological methods that made it possible to synthesize CdO nanoparticles and carry out their qualitative and quantitative diagnostics, confirming the as-prepared CdO nanoparticles (NPs) were spherical and had a size of 25 nm. Then, under the conditions of the model experiment the effect of CdO in macro and nanosized particles on absorption, transformation, and structural and functional changes occurring in cells and tissues of Hordeum vulgare L. (spring barley) during its ontogenesis was analyzed.

View Article and Find Full Text PDF

The genes are present in a wide variety of conjugative plasmids and play an important role in overcoming the restriction barrier. To date, there is no information on the chromosomal genes. It is still unclear whether they keep their antirestriction activity and why bacterial chromosomes contain these genes.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the role of satellite repeats in understanding the evolutionary relationships among grass species, specifically their contribution to the St genome in polyploid organisms.
  • A comparative analysis of the repeatomes of closely related grass species revealed similar overall structures but highlighted distinct patterns in the abundance and localization of various retrotransposons and satellite repeats.
  • The findings suggest that the analyzed species share a close evolutionary relationship, and the newly identified chromosome markers can aid in future population studies involving related wild species and hybrid forms.
View Article and Find Full Text PDF

Integration of HIV-1 genomic cDNA results in the formation of single-strand breaks in cellular DNA, which must be repaired for efficient viral replication. Post-integration DNA repair mainly depends on the formation of the HIV-1 integrase complex with the Ku70 protein, which promotes DNA-PK assembly at sites of integration and its activation. Here, we have developed a first-class inhibitor of the integrase-Ku70 complex formation that inhibits HIV-1 replication in cell culture by acting at the stage of post-integration DNA repair.

View Article and Find Full Text PDF

Despite the high level of interest, the population history of arctic foxes during the Late Pleistocene and Holocene remains poorly understood. Here we aimed to fill gaps in the demographic and colonization history of the arctic fox by analyzing new ancient DNA data from fossil specimens aged from 50 to 1 thousand years from the Northern and Polar Urals, historic DNA from museum specimens from the Novaya Zemlya Archipelago and the Taymyr Peninsula and supplementing these data by previously published sequences of recent and extinct arctic foxes from other regions. This dataset was used for reconstruction of a time-calibrated phylogeny and a temporal haplotype network covering four time intervals: Late Pleistocene (ranging from 30 to 13 thousand years bp), Holocene (ranging from 4 to 1 thousand years bp), historical (approximately 150 years), and modern.

View Article and Find Full Text PDF

Relativistic coupled-cluster calculations of the ionization potential, dissociation energy, and excited electronic states under 35 000 cm-1 are presented for the actinium monofluoride (AcF) molecule. The ionization potential is calculated to be IPe = 48 866 cm-1, and the ground state is confirmed to be a closed-shell singlet and thus strongly sensitive to the T,P-violating nuclear Schiff moment of the Ac nucleus. Radiative properties and transition dipole moments from the ground state are identified for several excited states, achieving a mean uncertainty estimate of ∼450 cm-1 for the excitation energies.

View Article and Find Full Text PDF