86,634 results match your criteria: "National Neuroscience Institute; and Duke-NUS Graduate Medical School (J.C.A.[Affiliation]"

Plasma phosphorylated tau biomarkers open unprecedented opportunities for identifying carriers of Alzheimer's disease pathophysiology in early disease stages using minimally invasive techniques. Plasma p-tau biomarkers are believed to reflect tau phosphorylation and secretion. However, it remains unclear to what extent the magnitude of plasma p-tau abnormalities reflects neuronal network disturbance in the form of cognitive impairment.

View Article and Find Full Text PDF

Purpose: Cerebral palsy (CP) is the most prevalent motor disability affecting children. Many children with CP have significant speech difficulties and require augmentative and alternative communication (AAC) to participate in communication. Despite demonstrable benefits, the use of AAC systems among children with CP remains constrained, although research in Canada is lacking.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Background And Objective: The global average life expectancy has been increasing steadily as the quality of healthcare continues to improve. However, there is a paucity of data looking at surgical fixation of thoracolumbar spine fractures in patients ≥80 years (super-elderly). Aim of this study is to look at whether there is higher rate of complications from surgical fixation of thoracolumbar fractures in this group of patients.

View Article and Find Full Text PDF

Background: The p.A53T variant in the SNCA gene was considered, until recently, to be the only SNCA variant causing familial Parkinson's disease (PD) in the Greek population. We identified a novel heterozygous p.

View Article and Find Full Text PDF

Glia contribute to the neuropathology of Parkinson disease (PD), but how they react opposingly to be beneficial or detrimental under pathological conditions, like promoting or eliminating SNCA/α-syn (synuclein alpha) inclusions, remains elusive. Here we present evidence that aux (auxilin), the homolog of the PD risk factor GAK (cyclin G associated kinase), regulates the lysosomal degradation of SNCA/α-syn in glia. Lack of glial GAK/aux increases the lysosome number and size, regulates lysosomal acidification and hydrolase activity, and ultimately blocks the degradation of substrates including SNCA/α-syn.

View Article and Find Full Text PDF
Article Synopsis
  • Hypomanic personality traits (HPT) are linked to higher risk for psychiatric disorders like bipolar disorder and are associated with aggressive behaviors, yet the underlying neuropsychological mechanisms are not fully understood.
  • The study used psychometric network analysis to identify key factors (Behavioral Inhibition System and mood volatility) that connect HPT to aggression, finding that mood volatility positively correlates with aggression, with BIS acting as a mediator.
  • Further imaging studies revealed distinct functions of the dorsal and ventral sensorimotor cortices in processing rewards, and resting-state imaging confirmed these regions' connections to different brain networks, highlighting the importance of these circuits in mediating the relationship between mood volatility, aggression, and BIS.
View Article and Find Full Text PDF

Unlabelled: Transparent and accurate reporting in early phase dose-finding (EPDF) clinical trials is crucial for informing subsequent larger trials. The SPIRIT statement, designed for trial protocol content, does not adequately cover the distinctive features of EPDF trials. Recent findings indicate that the protocol contents in past EPDF trials frequently lacked completeness and clarity.

View Article and Find Full Text PDF

Unlabelled: Early phase dose-finding (EPDF) trials are key in the development of novel therapies, with their findings directly informing subsequent clinical development phases and providing valuable insights for reverse translation. Comprehensive and transparent reporting of these studies is critical for their accurate and critical interpretation, which may improve and expedite therapeutic development. However, quality of reporting of design characteristics and results from EPDF trials is often variable and incomplete.

View Article and Find Full Text PDF

Introduction: The link between overload brain iron and transcriptional/cellular signatures in Alzheimer's disease (AD) remains inconclusive.

Methods: Iron deposition in 41 cortical and subcortical regions of 30 AD patients and 26 healthy controls (HCs) was measured using quantitative susceptibility mapping (QSM). The expression of 15,633 genes was estimated in the same regions using transcriptomic data from the Allen Human Brain Atlas (AHBA).

View Article and Find Full Text PDF

Although naturalists have devoted attention to cetaceans since Antiquity, it was only in the 19th century that cetology underwent a true explosion. Three key cetological works of this period are The Natural History of the Sperm Whale (1839) by Thomas Beale, The Whaleman's Adventures in the Southern Ocean (1850) by Henry Cheever and The Seals and Whales of the British Seas (1881) by Thomas Southwell. Importantly, these three works did not only represent fundamental compendia of scientific knowledge of cetaceans, but also had a crucial role in awakening a cetacean protection consciousness.

View Article and Find Full Text PDF

Artificial light sources, particularly blue light, have raised concerns about their impact on biological health and behavior. In this study, we explored the effects of blue light on the locomotion and cognitive functions of early adult Drosophila melanogaster. Our experiments were conducted in a custom-designed behavioral arena to assess how blue light influences these parameters.

View Article and Find Full Text PDF

A large proportion of genetic variations involved in complex diseases are rare and located within noncoding regions, making the interpretation of underlying biological mechanisms a daunting task. Although technical and methodological progress has been made to annotate the genome, current disease-rare-variant association tests incorporating such annotations suffer from two major limitations. First, they are generally restricted to case-control designs of unrelated individuals, which often require tens or hundreds of thousands of individuals to achieve sufficient power.

View Article and Find Full Text PDF

Objective: Progressive Supranuclear Palsy (PSP) is a severe neurodegenerative disease characterized by tangles of hyperphosphorylated tau protein and tufted astrocytes. Developing treatments for PSP is challenging due to the lack of disease models reproducing its key pathological features. This study aimed to model sporadic PSP-Richardson's syndrome (PSP-RS) using multi-donor midbrain organoids (MOs).

View Article and Find Full Text PDF

Background: High-resolution brain imaging is crucial in clinical diagnosis and neuroscience, with ultra-high field strength MRI systems ( ) offering significant advantages for imaging neuronal microstructures. However, achieving magnetic field homogeneity is challenging due to engineering faults during the installation of superconducting strip windings and the primary magnet.

Purpose: This study aims to design and optimize active superconducting shim coils for a 7 T animal MRI system, focusing on the impact of safety margin, size, and adjustability of the second-order shim coils on the MRI system's optimization.

View Article and Find Full Text PDF

NLRX1 limits inflammatory neurodegeneration in the anterior visual pathway.

J Neuroinflammation

January 2025

Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.

Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.

View Article and Find Full Text PDF

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

The default mode network (DMN) is implicated in many aspects of complex thought and behavior. Here, we leverage postmortem histology and in vivo neuroimaging to characterize the anatomy of the DMN to better understand its role in information processing and cortical communication. Our results show that the DMN is cytoarchitecturally heterogenous, containing cytoarchitectural types that are variably specialized for unimodal, heteromodal and memory-related processing.

View Article and Find Full Text PDF

To ensure their survival, animals must be able to respond adaptively to threats within their environment. However, the precise neural circuit mechanisms that underlie flexible defensive behaviors remain poorly understood. Using neuronal manipulations, machine learning-based behavioral detection, electron microscopy (EM) connectomics and calcium imaging in Drosophila larvae, we map second-order interneurons that are differentially involved in the competition between defensive actions in response to competing aversive cues.

View Article and Find Full Text PDF

Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein.

View Article and Find Full Text PDF