97 results match your criteria: "National NanoFab Center NNFC[Affiliation]"

Numerous studies have focused on graphene owing to its potential as a next-generation electronic material, considering its high conductivity, transparency, superior mechanical stiffness, and flexibility. However, cost-effective mass production of graphene-based electronics based on existing fabrication methods, such as graphene transfer and metal formation, remains a challenge. This study proposes a simple and efficient method for creating electrical contacts with graphene.

View Article and Find Full Text PDF

Molecular diagnosis limitations, including complex treatment processes, low cost-effectiveness, and operator-dependent low reproducibility, interrupt the timely prevention of disease spread and the development of medical devices for home and outdoor uses. A newly fabricated gold nanopillar array-based film is presented for superior photothermal energy conversion. Magnifying the metal film surface-to-volume ratio increases the photothermal energy conversion efficiency, resulting in a swift reduction in the gene amplification reaction time.

View Article and Find Full Text PDF

The growing risk of bacterial food poisoning due to global warming has necessitated the development of methods for accurate detection of food-poisoning bacteria. Despite extensive efforts to develop enhanced bacterial-capture methods, challenges associated with the release of the captured bacteria have limited the sensitivity of bacterial detection. In this study, thermo-responsive intelligent 3D nanostructures to improve food-poisoning bacterial analysis performance were fabricated by introducing a thermo-responsive polymer onto an urchin-like 3D nanopillar substrate (URCHANO).

View Article and Find Full Text PDF

The increasing incidence of serious bacterial keratitis, a sight-threatening condition often exacerbated by inadequate contact lens (CLs) care, highlights the need for innovative protective technology. This study introduces a long-lasting antibacterial, non-cytotoxic, transparent nanocoating for CLs via a solvent-free polymer deposition method, aiming to prevent bacterial keratitis. The nanocoating comprises stacked polymer films, with poly(dimethylaminomethyl styrene-co-ethylene glycol dimethacrylate) (pDE) as a biocompatible, antibacterial layer atop poly(2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane) (pV4D4) as an adhesion-promoting layer.

View Article and Find Full Text PDF

Longevous Protic Hybrid Supercapacitors Using Bimetallic Prussian Blue Analogue/rGO-Based Nanocomposite Against MXene Anode.

Small

September 2024

Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.

MXenes exhibit a unique combination of properties-2D structure, high conductivity, exceptional capacity, and chemical resistance-making them promising candidates for hybrid supercapacitors (HSCs). However, the development of MXene-based HSCs is often hindered by the limited availability of cathode materials that deliver comparable electrochemical performance, especially in protic electrolytes. In this study, this challenge is addressed by introducing a durable protic HSC utilizing a bimetallic Prussian Blue Analogue (PBA) decorated on reduced graphene oxide (rGO) as a nanocomposite cathode paired with a single-layered TiCT MXene (SL-MXene) anode.

View Article and Find Full Text PDF

Explainable artificial intelligence-driven prostate cancer screening using exosomal multi-marker based dual-gate FET biosensor.

Biosens Bioelectron

January 2025

Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea. Electronic address:

Article Synopsis
  • The Prostate Imaging Reporting and Data System (PI-RADS) is commonly used for diagnosing prostate cancer, but it struggles with PI-RADS 3 lesions, showing only 30-40% accuracy and a high false-positive rate.
  • Researchers propose a new explainable AI (XAI) system that uses a sensitive biosensor to identify ambiguous prostate cancer lesions by analyzing urinary exosomal biomarkers, demonstrating significantly higher accuracy.
  • The XAI system not only improved diagnosis accuracy for PI-RADS 3 lesions but also explained the reasoning behind its predictions, particularly highlighting the TMEM256 biomarker as a key factor in screening, thereby supporting better clinical decision-making.
View Article and Find Full Text PDF

Bioactive metal-based nanostructures, particularly zinc oxide (ZnO), are promising materials for bone tissue engineering. However, integrating them into 3D-printed polymers using traditional blending methods reduces the cell performance. Alternative surface deposition techniques often require extreme conditions that are unsuitable for polymers.

View Article and Find Full Text PDF

Exploring role of microbatteries in enhancing sustainability and functionality of implantable biosensors and bioelectronics.

Biosens Bioelectron

September 2024

National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. Electronic address:

Microbatteries are emerging as a sustainable, miniaturized power source, crucial for implantable biomedical devices. Their significance lies in offering high energy density, longevity, and rechargeability, facilitating uninterrupted health monitoring and treatment within the body. The review delves into the development of microbatteries, emphasizing their miniaturization and biocompatibility, crucial for long-term, safe in-vivo use.

View Article and Find Full Text PDF

Digital PCR (dPCR) is a technique for absolute quantification of nucleic acid molecules. To develop a dPCR technique that enables more accurate nucleic acid detection and quantification, we established a novel dPCR apparatus known as centrifugal force real-time dPCR (crdPCR). This system is efficient than other systems with only 2.

View Article and Find Full Text PDF

Depth profiling is an essential method to investigate the physical and chemical properties of a solid electrolyte and electrolyte/electrode interface. In conventional depth profiling, various spectroscopic tools such as X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) are utilized to monitor the chemical states along with ion bombardment to etch a sample. Nevertheless, the ion bombardment during depth profiling results in an inevitable systematic error, i.

View Article and Find Full Text PDF

On-site detection of methicillin-resistant Staphylococcus aureus (MRSA) utilizing G-quadruplex based isothermal exponential amplification reaction (GQ-EXPAR).

Talanta

August 2024

Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Methicillin-resistant Staphylococcus aureus (MRSA) has a high incidence in infectious hospitals and communities, highlighting the need for early on-site detection due to its resistance to methicillin antibiotics. The present study introduces a highly sensitive detection system for mecA, a crucial methicillin marker, utilizing an RCA-based isothermal exponential amplification reaction. The G-quadruplex-based isothermal exponential amplification reaction (GQ-EXPAR) method designs probes to establish G-quadruplex secondary structures incorporating thioflavin T for fluorescence.

View Article and Find Full Text PDF

Proactive management of foodborne illness requires routine surveillance of foodborne pathogens, which requires developing simple, rapid, and sensitive detection methods. Here, a strategy is presented that enables the detection of multiple foodborne bacteria using a 3D nanostructure swab and deep learning-based Raman signal classification. The nanostructure swab efficiently captures foodborne pathogens, and the portable Raman instrument directly collects the Raman signals of captured bacteria.

View Article and Find Full Text PDF

Developing a superomniphobic surface that exceeds the static and dynamic repellency observed in nature's springtails for various liquids presents a significant challenge in the realm of surface and interface science. However, progress in this field has been particularly limited when dealing with low-surface-tension liquids. This is because dynamic repellency values are typically at least 2 orders of magnitude lower than those observed with water droplets.

View Article and Find Full Text PDF

Gate Capacitance Coupling of Double-Gate Carbon Nanotube Network Transistors.

ACS Appl Mater Interfaces

February 2024

School of Electrical Engineering, Kookmin University, Seoul 02707, Korea.

Carbon nanotube (CNT) network channels constructed using a high-purity CNT solution for use in CNT thin-film transistors have the advantages of the possibility of requiring a low-temperature process and needing no special equipment. However, there are empty spaces between individual CNTs, resulting in unexpected effects. In this study, double-gate (DG) CNT network transistors were fabricated and measured in four different configurations to observe the capacitive coupling effects between the top gate (TG) and bottom gate (BG) in the DG structure.

View Article and Find Full Text PDF

Endonucleases have recently widely used in molecular diagnostics. Here, we report a strategy to exploit the properties of Argonaute (Ago) proteins for molecular diagnostics by introducing an artificial nucleic acid circuit with Ago protein (ANCA) method. The ANCA is designed to perform a continuous autocatalytic reaction through cross-catalytic cleavage of the Ago protein, enabling one-step, amplification-free, and isothermal DNA detection.

View Article and Find Full Text PDF

Calibrating the phase in integrated optical phased arrays (OPAs) is a crucial procedure for addressing phase errors and achieving the desired beamforming results. In this paper, we introduce a novel phase calibration methodology based on a deep neural network (DNN) architecture to enhance beamforming in integrated OPAs. Our methodology focuses on precise phase control, individually tailored to each of the 64 OPA channels, incorporating electro-optic phase shifters.

View Article and Find Full Text PDF

A portable smartphone-based colorimetric sensor that utilizes dual amplification for the on-site detection of airborne bacteria.

J Hazard Mater

October 2023

Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Over the past few years, infections caused by airborne pathogens have spread worldwide, infecting several people and becoming an increasingly severe threat to public health. Therefore, there is an urgent need for developing airborne pathogen monitoring technology for use in confined environments to enable epidemic prevention. In this study, we designed a colorimetry-based bacterial detection platform that uses a clustered regularly interspaced short palindromic repeat-associated protein 12a system to amplify signals and a urease enzyme to induce color changes.

View Article and Find Full Text PDF

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid, user-friendly nucleic acid testing that involves simple but efficient RNA extraction. Here, we present a charge-shifting polyplex as an RNA extraction carrier for advanced diagnosis of infectious viral diseases. The polyplex comprises poly(2-(dimethylamino) ethyl acrylate) (pDMAEA) electrostatically conjugated with RNA.

View Article and Find Full Text PDF

Memristors are two-terminal memory devices that can change the conductance state and store analog values. Thanks to their simple structure, suitability for high-density integration, and non-volatile characteristics, memristors have been intensively studied as synapses in artificial neural network systems. Memristive synapses in neural networks have theoretically better energy efficiency compared with conventional von Neumann computing processors.

View Article and Find Full Text PDF

Highly purified and solution-processed semiconducting carbon nanotubes (s-CNTs) have developed rapidly over the past several decades and are near-commercially available materials that can replace silicon due to its large-area substrate deposition and room-temperature processing compatibility. However, the more s-CNTs are purified, the better their electrical performance, but considerable effort and long centrifugation time are required, which can limit commercialization due to high manufacturing costs. In this work, we therefore fabricated 'striped' CNT network transistor across industry-standard 8 inch wafers.

View Article and Find Full Text PDF

Sensitive and accurate capture, enrichment, and identification of drug-resistant bacteria on human skin are important for early-stage diagnosis and treatment of patients. Herein, we constructed a three-dimensional hierarchically structured polyaniline nanoweb (3D HPN) to capture, enrich, and detect drug-resistant bacteria on-site by rubbing infected skins. These unique hierarchical nanostructures enhance bacteria capture efficiency and help severely deform the surface of the bacteria entrapped on them.

View Article and Find Full Text PDF

We demonstrate heterogeneous integration of active semiconductor materials into the conventional passive metal-insulator-metal (MIM) waveguides to provide compact on-chip light generation and detection capabilities for chip-scale active nanophotonic platforms. Depending on its bias conditions, a metal-semiconductor-metal section can function as either a light emitting diode or a photodetector directly connected to the MIM waveguides. We experimentally verify the independent and combined operations of electrically-driven on-chip light sources and photodetectors.

View Article and Find Full Text PDF

Point-of-care real-time reverse-transcription polymerase chain reaction (RT-PCR) facilitates the widespread use of rapid, accurate, and cost-effective near-patient testing that is available to the public. Here, we report ultrafast plasmonic nucleic acid amplification and real-time quantification for decentralized molecular diagnostics. The plasmonic real-time RT-PCR system features an ultrafast plasmonic thermocycler (PTC), a disposable plastic-on-metal (PoM) cartridge, and an ultrathin microlens array fluorescence (MAF) microscope.

View Article and Find Full Text PDF

Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory.

Nat Commun

January 2023

School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

With the exponential growth of the semiconductor industry, radiation-hardness has become an indispensable property of memory devices. However, implementation of radiation-hardened semiconductor memory devices inevitably requires various radiation-hardening technologies from the layout level to the system level, and such technologies incur a significant energy overhead. Thus, there is a growing demand for emerging memory devices that are energy-efficient and intrinsically radiation-hard.

View Article and Find Full Text PDF

Elution-free DNA detection using CRISPR/Cas9-mediated light-up aptamer transcription: Toward all-in-one DNA purification and detection tube.

Biosens Bioelectron

April 2023

Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address:

Accurate and efficient detection of DNA is crucial for disease diagnosis and health monitoring. The traditional methods for DNA analysis involve multiple steps, including sample preparation, lysis, extraction, amplification, and detection. In this study, we present a one-step elution-free DNA analysis method based on the combination of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated light-up aptamer transcription (CLAT) assay and a DNA-capturing poly(2-dimethylaminomethyl styrene) (pDMAMS)-coated tube.

View Article and Find Full Text PDF