13 results match your criteria: "National Metrology Institute (TUBITAK UME)[Affiliation]"

Objectives: An analytical protocol based on isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS), which includes a peptide-based calibration strategy, was developed and validated for the determination of cardiac troponin I (cTnI) levels in clinical samples. Additionally, the developed method was compared with a protein-based calibration strategy, using cTnI serving as a model for low-abundant proteins. The aim is to evaluate new approaches for protein quantification in complex matrices, supporting the metrology community in implementing new methods and developing fit-for-purpose SI- traceable peptide or protein primary calibrators.

View Article and Find Full Text PDF
Article Synopsis
  • Peroxisome biogenesis disorders (PBDs) include various diseases with diverse symptoms like developmental delays, hearing loss, and liver issues, linked to genetic mutations affecting peroxisome function.* -
  • A patient was studied using whole-exome sequencing to identify genetic causes behind their clinical symptoms, which included developmental delays and organ enlargement, but no single-nucleotide mutations were found.* -
  • However, a homozygous deletion in exon 4 of the gene was identified, affecting the protein's transmembrane domain, which is crucial for normal cellular processes and peroxisome function.*
View Article and Find Full Text PDF

Background/aim: Ischemic heart diseases continue to be a significant global cardiovascular problem in today's world. Myocardial reperfusion (R) is provided with an effective and rapid treatment; however, it can lead to fatal results, as well as ischemia (I). This study aims to use proteomic analysis to assess proteins and pathways in H9C2 cardiomyoblast cells exposed to hypoxic conditions, followed by reoxygenation, representing I/R injury for both short and long terms, reflecting acute and chronic hypoxia, respectively.

View Article and Find Full Text PDF

The investigation of collagen hydrolysates (CHs) is essential due to their widespread use in health, cosmetic, and therapeutic industries, attributing to the presence of bioactive dipeptides (DPs) and tripeptides (TPs). This study developed a novel targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with propyl chloroformate (PCF) derivatization to measure three bioactive peptides-Hydroxyprolyl-glycine (Hyp-Gly), Glycyl-prolyl-hydroxyproline (Gly-Pro-Hyp), and Prolyl-hydroxyproline (Pro-Hyp)-in CHs, with strong correlation coefficients (0.992, 1.

View Article and Find Full Text PDF

Introduction: The accurate quantification of amyloid beta (Aβ) peptides in cerebrospinal fluid (CSF) is crucial for Alzheimer's disease (AD) research, particularly in terms of preclinical and biomarker studies. Traditional methods, such as the enzyme-linked immunosorbent assay (ELISA), have limitations. These include high costs, labor intensity, lengthy processes, and the possibility of cross-reactivity.

View Article and Find Full Text PDF

Development of an ID-LC-MS/MS method using targeted proteomics for quantifying cardiac troponin I in human serum.

Clin Proteomics

September 2023

Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.

Background: Cardiac troponin is a complex protein consisting of the three subunits I, T and C located in heart muscle cells. When the heart muscle is damaged, it is released into the blood and can be detected. Cardiac troponin I (cTnI) is considered the most reliable and widely accepted test for detecting and confirming acute myocardial infarction.

View Article and Find Full Text PDF

Hypochlorite/hypochlorous acid (ClO/HOCl), among the diverse reactive oxygen species, plays a vital role in various biological processes. Besides, ClO is widely known as a sanitizer for fruits, vegetables, and fresh-cut produce, killing bacteria and pathogens. However, excessive level of ClO can lead to the oxidation of biomolecules such as DNA, RNA, and proteins, threatening vital organs.

View Article and Find Full Text PDF

Magneto-Optical Indicator Films: Fabrication, Principles of Operation, Calibration, and Applications.

Sensors (Basel)

April 2023

Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, D-38116 Braunschweig, Germany.

Magneto-optical indicator films (MOIFs) are a very useful tool for direct studies of the spatial distribution of magnetic fields and the magnetization processes in magnetic materials and industrial devices such as magnetic sensors, microelectronic components, micro-electromechanical systems (MEMS), and others. The ease of application and the possibility for direct quantitative measurements in combination with a straightforward calibration approach make them an indispensable tool for a wide spectrum of magnetic measurements. The basic sensor parameters of MOIFs, such as a high spatial resolution down to below 1 μm combined with a large spatial imaging range of up to several cm and a wide dynamic range from 10 μT to over 100 mT, also foster their application in various areas of scientific research and industry.

View Article and Find Full Text PDF

Development and characterisation of cysteine-based gold electrodes for the electrochemical biosensing of the SARS-CoV-2 spike antigen.

Analyst

October 2022

Electrochemistry Laboratory, Chemistry Group, The Scientific and Technological Research Council of Turkey, National Metrology Institute (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey.

This article describes three novel electrochemical biosensing platforms developed to determine the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) spike antigen protein: glutaraldehyde, SARS-CoV-2 spike antibody and bovine serum albumin; ,-dicyclohexyl carbodiimide/4-(dimethylamino)pyridine functionalised SARS-CoV-2 spike antibody and bovine serum albumin; and 1-ethyl-3-[3-dimethylaminopropyl]-carbodiimide hydrochloride/-hydroxysuccinimide functionalised SARS-CoV-2 spike antibody and bovine serum albumin modified cysteine-based gold-flower modified glassy carbon electrodes. Two of the produced biosensors having better signals were used to determine the SARS-CoV-2 spike antigen in spiked-saliva and clinical samples containing gargle and mouthwash liquids and characterised using cyclic voltammetry, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The study provides highly significant information in terms of how coupling reagents ought to be used with linkers consisting of both amine and carboxylic acid terminals ( cysteine).

View Article and Find Full Text PDF

We developed an electrochemical biosensing platform using gold-clusters, cysteamine, the spike protein of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antigen and bovine serum albumin on a glassy carbon electrode able to determine the SARS-CoV-2 spike antibody. The developed biosensor could detect 9.3 ag/mL of the SARS-CoV-2 spike antibody in synthetic media in 20 min in a linear range from 0.

View Article and Find Full Text PDF

We devised a new generation of halogen-based triplet sensitisers comprising geminal dibromides at the vinyl backbone of a BODIPY fluorophore. Incorporating geminal dibromides into the π-conjugation of BODIPY enhanced intersystem crossing due to the heavy atom effect, which in turn improved the extent of excited triplet states.

View Article and Find Full Text PDF

SARS-CoV-2 in vitro transcribed RNA reference materials (RM), UME RM 2019 and UME RM 2020, were produced by Scientific and Technological Research Council of Turkey (TUBITAK), National Metrology Institute (UME), to be used as a quality control material for SARS-CoV-2 measurements, in liquid-frozen and lyophilized forms, respectively. These RNA RMs include ten internationally recommended SARS-CoV-2 target gene fragments (Pasteur-RdRp-IP2, Pasteur-RdRp-IP4, Charite-E, Charite-RdRp, CDC-N1, CDC-N2, China CDC-ORF1ab, China CDC-N, Hong Kong-ORF1b, and Hong Kong-N) for virus detection and one human gene fragment (RNase P) as an internal control. Two different platforms, RT-qPCR and RT-ddPCR, were used to characterize UME RM 2019 (UME RM 2020 was only characterized with RT-qPCR).

View Article and Find Full Text PDF

Background: Genetic testing of tumor tissue and circulating cell-free DNA for somatic variants guides patient treatment of many cancers. Such measurements will be fundamental in the future support of precision medicine. However, there are currently no primary reference measurement procedures available for nucleic acid quantification that would support translation of tests for circulating tumor DNA into routine use.

View Article and Find Full Text PDF