7 results match your criteria: "National Medical Research Oncology Center[Affiliation]"

Cancer cell aggressiveness, marked by actin cytoskeleton reconfiguration critical for metastasis, may result from an imbalanced ratio favoring γ-actin. Dysfunctional p53 emerges as a key regulator of invasiveness and migration in various cancer cells, both in vitro and in vivo. P53 inactivation (via mutants R175H, R248W, R273H, or TP53 repression) significantly enhanced the migration, invasion, and proliferation of human lung adenocarcinoma A549 cells in vitro and in vivo, facilitating intrapulmonary xenograft metastasis in athymic mice.

View Article and Find Full Text PDF

This article includes the data from current studies regarding the pathophysiological mechanisms of skin aging and the regenerative processes occurring in the epidermis and dermis at the molecular and cellular level, mainly, the key role of dermal fibroblasts in skin regeneration. Analyzing these data, the authors proposed the concept of skin anti-age therapy that is based on the correction of age-related skin changes by stimulating regenerative processes at the molecular and cellular level. The main target of the skin anti-age therapy is dermal fibroblasts (DFs).

View Article and Find Full Text PDF

Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. With age, an impairment of structures, quality characteristics, and functions of the dermal extracellular matrix (ECM) occurs in the skin, which leads to disrupted functioning of dermal fibroblasts (DFs), the main cells supporting morphofunctional organization of the skin. The DF functioning directly depends on the state of the surrounding collagen matrix (CM).

View Article and Find Full Text PDF

Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. The processes developing in the skin during aging are based on fundamental molecular mechanisms associated with fibroblasts, the main cellular population of the dermis. It has been revealed that the amount of fibroblasts decreases markedly with age and their functional activity is also reduced.

View Article and Find Full Text PDF

We analyzed the peculiarities of the copy number variation of genes that regulate apoptosis, DNA repair, cell proliferation, metabolism, and estrogen reception in tumor and normal cells of high-grade and low-grade serous adenocarcinoma of the ovaries. Using real-time qPCR method, the relative copy number of 34 genes (BAX, BCL2, TP53, MDM2, CASP9, CASP3, CASP7, CASP8, PRKCI, SOX2, OCT4, PIK3, PTEN, C-MYC, SOX18, AKT1, NOTCH1, BRCA1, BRCA2, EXO1, SCNN1A, KRAS, EGFR, BRAF, CYP1A1, CYP1A2, CYP1B1, CYP19A, ESR1, ESR2, GPER, STS, SULT1A, and SULT1E1) was determined in normal and tumor cells of the ovaries extracted by contactless capture laser microsection from FFPE-blocks of 200 patients. The most typical molecular markers of ovarian serous adenocarcinoma cells were identified: copy number of PIK3CA, BCL2, BAX, CASP3, and CASP8 genes.

View Article and Find Full Text PDF

We report a patient with recurrent glioblastoma in eloquent brain area. Stereotactic fluorescence biospectroscopy and stereotactic photodynamic therapy of tumor in opercular area of the left frontal lobe under neurophysiological monitoring were carried out. Literature data on this issue were analyzed.

View Article and Find Full Text PDF

We assessed the effects of donor age on clonogenicity, proliferative potential, and spontaneous γH2AX foci in the proliferating (Ki67 +) and senescent (SA β-gal +) cultures of skin fibroblasts isolated from 34 donors of different age (23-82 years). Here, we demonstrated that neither the colony forming effectiveness of proliferating (Ki67+) fraction of the fibroblasts nor the average number of γH2AX foci of the same fraction does not depend on the age of the donor. The correlation between the number of γH2AX foci and the donor's age was reliable in quiescent (Ki67-) cells.

View Article and Find Full Text PDF