30 results match your criteria: "National Medical Research Centre of Cardiology Named after Academician E. I. Chazov[Affiliation]"

Article Synopsis
  • Alzheimer's disease was experimentally induced in female Wistar rats through injections of β-amyloid into the hippocampus.
  • Following this, olfactory mucosa cells were transplanted into the same brain region and showed survival and clustering by week 4.
  • The transplanted cells improved cognitive functions significantly between weeks 3-5, suggesting potential for further research on these cells as a personalized treatment for Alzheimer's disease.
View Article and Find Full Text PDF
Article Synopsis
  • The study measured the electrical impedance and pulsation ranges of brachial and femoral arteries in rats after 14 days of hindlimb unloading (a model for microgravity).
  • Results showed that the femoral artery constricted while the brachial artery dilated, with both exhibiting reduced pulsation dynamics.
  • The ability of the femoral artery to switch to an active pulsatile mode during bloodletting was significantly lower in unloaded rats than in control rats, indicating potential negative effects of microgravity on blood circulation.
View Article and Find Full Text PDF

The increasing burden of vascular dysfunction on healthcare systems worldwide results in higher morbidity and mortality rates across pathologies, including cardiovascular diseases. Vasculopathy is suggested to be caused by the dysregulation of vascular niches, a microenvironment of vascular structures comprising anatomical structures, extracellular matrix components, and various cell populations. These elements work together to ensure accurate control of the vascular network.

View Article and Find Full Text PDF

The review considers the use of exogenous neurotrophic factors in the treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and others. This group of diseases is associated with the death of neurons and dysfunction of the nervous tissue. Currently, there is no effective therapy for neurodegenerative diseases, and their treatment remains a serious problem of modern medicine.

View Article and Find Full Text PDF

A new gene-cell construct expressing nerve growth factor (NGF) has been developed. After obtaining engineered adenovectors Ad5-RGD-CAG-NGF and Ad5-RGD-CAG-EGFP, transduction efficiency and transgene expression were studied and multiplicity of infection was determined. The efficacy of transduced human olfactory ensheathing cells expressing NGF in restoring motor activity in rats has been shown in a limited period of time.

View Article and Find Full Text PDF

Immunodetection of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) in blood samples is widely used for the diagnosis of acute myocardial infarction. The cardiac troponin complex (ITC-complex), comprising cTnI, cTnT, and troponin C (TnC), makes up a large portion of troponins released into the bloodstream after the necrosis of cardiomyocytes. However, the stability of the ITC-complex has not been fully investigated.

View Article and Find Full Text PDF

Pulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis.

View Article and Find Full Text PDF

The cardiac perivascular niche is a cellular microenvironment of a blood vessel. The principles of niche regulation are still poorly understood. We studied the effect of TGFβ1 on cells forming the cardiac perivascular niche using 3D cell culture (cardiospheres).

View Article and Find Full Text PDF

We studied the effect of Refralon on the electrophysiological properties of the supraventricular myocardium against the background of adrenergic (epinephrine) influence in the zone of the pulmonary veins, the area where 50-90% of atrial arrhythmias is triggered. The experiments were carried out on isolated tissue preparations of Wistar rats. The multichannel microelectrode array technique was used to record action potentials simultaneously in the atrium and in the ostium and distal parts of the pulmonary veins.

View Article and Find Full Text PDF

Objectives: Heparin is a highly charged polysaccharide used as an anticoagulant to prevent blood coagulation in patients with presumed myocardial infarction and to prepare heparin plasma samples for laboratory tests. There are conflicting data regarding the effects of heparin on the measurement of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT), which are used for the immunodiagnosis of acute myocardial infarction. In this study, we investigated the influence of heparin on the immunodetection of human cardiac troponins.

View Article and Find Full Text PDF

The cellular secretome is pivotal in mediating intercellular communication and coordinating responses to stressors. Exosomes, initially recognized for their role in waste disposal, have now emerged as key intercellular messengers with significant therapeutic and diagnostic potential. Similarly, autophagy has transcended its traditional role as a waste removal mechanism, emerging as a regulator of intracellular communication pathways and a contributor to a unique autophagy-dependent secretome.

View Article and Find Full Text PDF

Background: Nowadays type 2 diabetes mellitus (T2DM) leads to population mortality growth. Today glucagon-like peptide type 1 receptor agonists (GLP-1 RA) are one of the most promising glucose-lowered drugs with anorexigenic and cardioprotective effects. The present study aims to determine the effects of GLP-1 RA semaglutide 6-month therapy on T2DM patient metabolic parameters and adipose progenitor cell health.

View Article and Find Full Text PDF

Defects in the low-density lipoprotein receptor (LDLR) are associated with familial hypercholesterolemia (FH), manifested by atherosclerosis and cardiovascular disease. LDLR deficiency in hepatocytes leads to elevated blood cholesterol levels, which damage vascular cells, especially endothelial cells, through oxidative stress and inflammation. However, the distinctions between endothelial cells from individuals with normal and defective LDLR are not yet fully understood.

View Article and Find Full Text PDF

Cellular senescence is a complex process characterized by irreversible cell cycle arrest. Senescent cells accumulate with age, promoting disease development, yet the absence of specific markers hampers the development of selective anti-senescence drugs. The integrated stress response (ISR), an evolutionarily highly conserved signaling network activated in response to stress, globally downregulates protein translation while initiating the translation of specific protein sets including transcription factors.

View Article and Find Full Text PDF

Cardiosphere-derived cells (CDCs) are currently being evaluated in clinical trials as a potential therapeutic tool for regenerative medicine. The effectiveness of transplanted CDCs is largely attributed to their ability to release beneficial soluble factors to enhance therapeutic effects. An emerging area of research is the pretreatment of stem cells, including CDCs, with various cytokines to improve their therapeutic properties.

View Article and Find Full Text PDF

Cohen syndrome is an autosomal recessive disorder caused by () gene mutations. This syndrome is significantly underdiagnosed and is characterized by intellectual disability, microcephaly, autistic symptoms, hypotension, myopia, retinal dystrophy, neutropenia, and obesity. VPS13B regulates intracellular membrane transport and supports the Golgi apparatus structure, which is critical for neuron formation.

View Article and Find Full Text PDF

This study investigated von Willebrand factor (VWF)-mediated platelet adhesion at high shear rates in patients with premature coronary artery disease (CAD). The study included 84 patients with stable premature CAD and 64 patients without CAD. Whole blood samples were perfused through a microfluidic cell over a collagen-coated surface at a shear rate of 1300 s.

View Article and Find Full Text PDF

Background: In recent years, there has been an increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM). Development of visceral instead of subcutaneous adipose tissue is pathogenic and increases the risk of metabolic abnormalities. We hypothesize that visceral adipocytes and stromal cells are able to deteriorate other fat depots metabolism via secretory mechanisms.

View Article and Find Full Text PDF

Thermogenic adipocytes have potential utility for the development of approaches to treat type 2 diabetes and obesity-associated diseases. Although several reports have proved the positive effect of beige and brown adipocyte transplantation in obese mice, translation to human cell therapy needs improvement. Here, we describe the application of CRISPR activation (CRISPRa) technology for generating safe and efficient adipose-tissue-engineered constructs with enhanced mitochondrial uncoupling protein 1 (UCP1) expression.

View Article and Find Full Text PDF

This review aimed to trace the inflammatory pathway from the NLRP3 inflammasome to monomeric C-reactive protein (mCRP) in atherosclerotic cardiovascular disease. CRP is the final product of the interleukin (IL)-1β/IL-6/CRP axis. Its monomeric form can be produced at sites of local inflammation through the dissociation of pentameric CRP and, to some extent, local synthesis.

View Article and Find Full Text PDF

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis.

View Article and Find Full Text PDF

Uncovering the risk factors for acute respiratory disease coronavirus 2019 (COVID-19) severity may help to provide a valuable tool for early patient stratification and proper treatment implementation, improving the patient outcome and lowering the burden on the healthcare system. Here we report the results of a single-center retrospective cohort study on 151 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected symptomatic hospitalized adult patients. We assessed the association of several blood test measurements, soluble urokinase receptor (uPAR) serum level and specific single nucleotide polymorphisms of (I/D), (rs2070744, rs1799983), (rs1799768), (rs2227564) and (rs344781, rs2302524) genes, with the disease severity classified by the percentage of lung involvement on computerized tomography scans.

View Article and Find Full Text PDF

Von Willebrand factor (VWF) is a large multimeric glycoprotein involved in hemostasis. It is essential for platelet adhesion to the subendothelium of the damaged endothelial layer at high shear rates. Such shear rates occur in small-diameter arteries, especially at stenotic sites.

View Article and Find Full Text PDF

The cardiohemodynamics was studied 1 week after the administration of streptozotocin (60 mg / kg) or 2 weeks after a dose of 30 mg / kg. All rats had a significantly elevated level of glucose in the blood (up to 27-31 mM). In an echocardiographic study, about 1/3 of diabetic animals exhibited systolic dysfunction, and the remaining 2/3 - diastolic dysfunction with an increase in isovolumic relaxation time by 1.

View Article and Find Full Text PDF