106 results match your criteria: "National Institute on Aging National Institutes of Health[Affiliation]"

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most widely applied forms of adoptive immunotherapy for the treatment of hematological malignancies. Detrimental graft-versus-host disease (GVHD), but also beneficial graft-versus-leukemia (GVL) effects occurring after allo-HSCT are largely mediated by alloantigen-reactive donor T cells in the graft. Separating GVHD from GVL effects is a formidable challenge, and a greater understanding of donor T cell biology is required to accomplish the uncoupling of GVHD from GVL.

View Article and Find Full Text PDF

Invaginating structures are common in the synapses of most animals. However, the details of these invaginating structures remain understudied in part because they are not well resolved in light microscopy and were often misidentified in early electron microscope (EM) studies. Utilizing experimental techniques along with the latest advances in microscopy, such as focused ion beam-scanning EM (FIB-SEM), evidence is gradually building to suggest that the synaptic invaginating structures contribute to synapse development, maintenance, and plasticity.

View Article and Find Full Text PDF

Introduction: We aim to investigate the longitudinal associations between changes in body weight (BW) and declines in cognitive function and risk of mild cognitive impairment (MCI)/dementia among cognitively normal individuals 65 years or older.

Methods: Data from the Age Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik Study) including 2620 participants, were examined using multiple logistic regression models. Cognitive function included speed of processing (SP), executive function (EF), and memory function (MF).

View Article and Find Full Text PDF

We developed a novel reporter transgenic zebrafish model called MITO-Luc/GFP zebrafish in which GFP and luciferase expression are under the control of the master regulator of proliferation NF-Y. In MITO-Luc/GFP zebrafish it is possible to visualize cell proliferation in vivo by fluorescence and bioluminescence. In this animal model, GFP and luciferase expression occur in early living embryos, becoming tissue specific in juvenile and adult zebrafish.

View Article and Find Full Text PDF

White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.

View Article and Find Full Text PDF

Aging is a major risk factor for quintessential cardiovascular diseases, which are closely related to arterial proinflammation. The age-related alterations of the amount, distribution, and properties of the collagen fibers, such as cross-links and degradation in the arterial wall, are the major sequelae of proinflammation. In the aging arterial wall, collagen types I, II, and III are predominant,  and are mainly produced by stiffened vascular smooth muscle cells (VSMCs) governed by proinflammatory signaling, leading to profibrosis.

View Article and Find Full Text PDF

Short telomeres are a principal defining feature of telomere biology disorders, such as dyskeratosis congenita (DC), for which there are no effective treatments. Here, we report that primary fibroblasts from DC patients and late generation telomerase knockout mice display lower nicotinamide adenine dinucleotide (NAD) levels, and an imbalance in the NAD metabolome that includes elevated CD38 NADase and reduced poly(ADP-ribose) polymerase and SIRT1 activities, respectively, affecting many associated biological pathways. Supplementation with the NAD precursor, nicotinamide riboside, and CD38 inhibition improved NAD homeostasis, thereby alleviating telomere damage, defective mitochondrial biosynthesis and clearance, cell growth retardation, and cellular senescence of DC fibroblasts.

View Article and Find Full Text PDF

Introduction: We describe findings from a large study that provide empirical support for the emerging construct of cognitive frailty and put forth a theoretical framework that may advance the future study of complex aging conditions. While cognitive impairment and physical frailty have long been studied as separate constructs, recent studies suggest they share common etiologies. We aimed to create a population predictive model to gain an understanding of the underlying biological mechanisms for the relationship between physical frailty and cognitive impairment.

View Article and Find Full Text PDF

Immunotherapies for Aging-Related Neurodegenerative Diseases-Emerging Perspectives and New Targets.

Neurotherapeutics

July 2020

Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.

Neurological disorders such as Alzheimer's disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD), and vascular dementia (VCID) have no disease-modifying treatments to date and now constitute a dementia crisis that affects 5 million in the USA and over 50 million worldwide. The most common pathological hallmark of these age-related neurodegenerative diseases is the accumulation of specific proteins, including amyloid beta (Aβ), tau, α-synuclein (α-syn), TAR DNA-binding protein 43 (TDP43), and repeat-associated non-ATG (RAN) peptides, in the intra- and extracellular spaces of selected brain regions. Whereas it remains controversial whether these accumulations are pathogenic or merely a byproduct of disease, the majority of therapeutic research has focused on clearing protein aggregates.

View Article and Find Full Text PDF

Objective: To test the hypothesis that among cognitively healthy individuals, distinct groups exist in terms of amyloid and phosphorylated-tau accumulation rates; that if rapid accumulator groups exist, their membership can be predicted by Alzheimer's disease (AD) risk factors, and that time points of significant increase in AD protein accumulation will be evident.

Methods: The analysis reports data from 263 individuals from the BIOCARD and 184 individuals from the Baltimore Longitudinal Study of Aging with repeated cerebrospinal fluid (CSF) and positron emission tomography (PET) sampling, respectively. We used latent class mixed-effect models to identify distinct classes of amyloid (CSF and PET) and p-Tau (CSF) accumulation rates and generalized additive modeling to investigate non-linear changes to AD biomarkers.

View Article and Find Full Text PDF

The enigma of excessively long telomeres in cancer: lessons learned from rare human POT1 variants.

Curr Opin Genet Dev

February 2020

Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA. Electronic address:

The discovery that rare POT1 variants are associated with extremely long telomeres and increased cancer predisposition has provided a framework to revisit the relationship between telomere length and cancer development. Telomere shortening is linked with increased risk for cancer. However, over the past decade, there is increasing evidence to show that extremely long telomeres caused by mutations in shelterin components (POT1, TPP1, and RAP1) also display an increased risk of cancer.

View Article and Find Full Text PDF

Background Research links blood pressure variability (BPV) with stroke; however, the association with cerebral small-vessel disease (CSVD) remains unclear. As BPV and mean blood pressure are interrelated, it remains uncertain whether BPV adds additional information to understanding cerebrovascular morphological characteristics. Methods and Results A systematic review was performed from inception until March 3, 2019.

View Article and Find Full Text PDF

Collagen accumulation and remodeling in the vascular wall is a cardinal feature of vascular fibrosis that exacerbates the complications of hypertension, aging, diabetes and atherosclerosis. With no specific therapy available to date, identification of mechanisms underlying vascular fibrogenesis is an important clinical goal. Here, we tested the hypothesis that Discoidin Domain Receptor 2 (DDR2), a collagen-specific receptor tyrosine kinase, is a determinant of arterial fibrosis.

View Article and Find Full Text PDF

Insulin-signaling abnormalities in drug-naïve first-episode schizophrenia: Transduction protein analyses in extracellular vesicles of putative neuronal origin.

Eur Psychiatry

October 2019

Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany. Electronic address:

Background: Metabolic syndrome and impaired insulin sensitivity may occur as side effects of atypical antipsychotic drugs. However, studies of peripheral insulin resistance using the homeostatic model assessment of insulin resistance (HOMA-IR) or oral glucose tolerance tests (OGTT) suggest that abnormal glucose metabolism is already present in drug-naive first-episode schizophrenia (DNFES). We hypothesized impairments of neuronal insulin signaling in DNFES.

View Article and Find Full Text PDF

A Pilot Study of Exenatide Actions in Alzheimer's Disease.

Curr Alzheimer Res

October 2020

Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States.

Background: Strong preclinical evidence suggests that exenatide, a glucagon-like peptide-1 (GLP- 1) receptor agonist used for treating type 2 diabetes, is neuroprotective and disease-modifying in Alzheimer's Disease (AD).

Objective: We performed an 18-month double-blind randomized placebo-controlled Phase II clinical trial to assess the safety and tolerability of exenatide and explore treatment responses for clinical, cognitive, and biomarker outcomes in early AD.

Method: Eighteen participants with high probability AD based on cerebrospinal fluid (CSF) biomarkers completed the entire study prior to its early termination by the sponsor; partial outcomes were available for twentyone.

View Article and Find Full Text PDF

Purpose: Blood vessels of the retina provide an easily-accessible, representative window into the condition of microvasculature. We investigated how retinal vessel structure captured in fundus photographs changes with age, and how this may reflect features related to patient health, including blood pressure.

Results: We used two approaches.

View Article and Find Full Text PDF

Muscle strength declines with aging and increasing physical activity is the only intervention known to attenuate this decline. In order to adequately investigate both preventive and therapeutic interventions against sarcopenia, a better understanding of the biological changes that are induced by physical activity in skeletal muscle is required. To determine the effect of physical activity on the skeletal muscle proteome, we utilized liquid-chromatography mass spectrometry to obtain quantitative proteomics data on human skeletal muscle biopsies from 60 well-characterized healthy individuals (20-87 years) who reported heterogeneous levels of physical activity (not active, active, moderately active, and highly active).

View Article and Find Full Text PDF

Fluid biomarkers for cognitive impairment have the advantage of being relatively noninvasive and capable of monitoring neuronal and other brain cell health in real time. Biomarkers can predict the onset of dementing illness, but also correlate with cognition in a dynamic way allowing us to follow treatment responses and determine brain recovery. Chronic HIV infection causes cognitive impairment in a subset of individuals suggesting "premature aging.

View Article and Find Full Text PDF

We present an in-depth case study of a rare individual (whom we will refer to as "Jane") who reported an inability to experience emotion. Jane completed a range of assessments measuring alexithymia, emotional awareness, and emotion recognition ability. She, along with 22 control participants, also underwent skin conductance (SC) measurement and facial electromyography (EMG) during exposure to affective images, and self reported the valence/arousal of their responses to those images.

View Article and Find Full Text PDF

Background Aging exponentially increases the incidence of morbidity and mortality of quintessential cardiovascular disease mainly due to arterial proinflammatory shifts at the molecular, cellular, and tissue levels within the arterial wall. Calorie restriction ( CR ) in rats improves arterial function and extends both health span and life span. How CR affects the proinflammatory landscape of molecular, cellular, and tissue phenotypic shifts within the arterial wall in rats, however, remains to be elucidated.

View Article and Find Full Text PDF

Objective: Brain glucose hypometabolism is a prominent feature of Alzheimer's disease (AD), and in this case-control study we used Magnetic Resonance Spectroscopy (MRS) to assess AD-related differences in the posterior cingulate/precuneal ratio of glucose, lactate, and other metabolites.

Methods: J-modulated Point-Resolved Spectroscopy (J-PRESS) and Prior-Knowledge Fitting (ProFit) software was used to measure glucose and other metabolites in the posterior cingulate/precuneus of 25 AD, 27 older controls, and 27 younger control participants. Clinical assessments for AD participants included cognitive performance measures, insulin resistance metrics and CSF biomarkers.

View Article and Find Full Text PDF

Adult stem cells demonstrate metabolic flexibility that is regulated by cell adhesion status. The authors demonstrate that adherent cells primarily utilize glycolysis, whereas suspended cells rely on oxidative phosphorylation for their ATP needs. Akt phosphorylation transduces adhesion-mediated regulation of energy metabolism, by regulating translocation of glucose transporters (GLUT1) to the cell membrane and thus, cellular glucose uptake and glycolysis.

View Article and Find Full Text PDF