40 results match your criteria: "National Institute of Technology Uttarakhand[Affiliation]"

This study explored using ultrafiltration (UF) membranes to treat pulp and paper mill wastewater, implementing a novel Taguchi experimental design to optimize operating conditions for pollutant removal and minimal membrane fouling. Researchers examined four factors: pH, temperature, transmembrane pressure, and volume reduction factor (VRF), each at three levels. Optimal conditions (pH 10, 25°C, 6 bar, VRF 3) led to a 35% reduction in flux due to fouling and high pollutant rejections: total hardness (83%), sulfate (97%), spectral absorption coefficient (SAC254) (95%), and chemical oxygen demand (COD) (89%).

View Article and Find Full Text PDF

Thermography is a non-invasive and non-contact method for detecting cancer in its initial stages by examining the temperature variation between both breasts. Preprocessing methods such as resizing, ROI (region of interest) segmentation, and augmentation are frequently used to enhance the accuracy of breast thermogram analysis. In this study, a modified U-Net architecture (DTCWAU-Net) that uses dual-tree complex wavelet transform (DTCWT) and attention gate for breast thermal image segmentation for frontal and lateral view thermograms, aiming to outline ROI for potential tumor detection, was proposed.

View Article and Find Full Text PDF

Mathematical Modeling of Oxygen Diffusion from Capillary to Tissues during Hypoxia through Multiple Points Using Fractional Balance Equations with Memory.

Crit Rev Biomed Eng

August 2024

Multi-Physical Engineering Sciences Group, Aeronautical and Mechanical Engineering Department, School of Science, Engineering and Environment (SEE), Newton Building, University of Salford, Manchester, M54WT, UK.

The diffusion of oxygen through capillary to surrounding tissues through multiple points along the length has been addressed in many clinical studies, largely motivated by disorders including hypoxia. However relatively few analytical or numerical studies have been communicated. In this paper, as a compliment to physiological investigations, a novel mathematical model is developed which incorporates the multiple point diffusion of oxygen from different locations in the capillary to tissues, in the form of a fractional dynamical system of equations using the concept of system of balance equations with memory.

View Article and Find Full Text PDF

Communication is challenging for disabled individuals, but with advancement of brain-computer interface (BCI) systems, alternative communication systems can be developed. Current BCI spellers, such as P300, SSVEP, and MI, have drawbacks like reliance on external stimuli or conversation irrelevant mental tasks. In contrast to these systems, Imagined speech based BCI systems rely on directly decoding the vowels/words user is thinking, making them more intuitive, user friendly and highly popular among Brain-Computer-Interface (BCI) researchers.

View Article and Find Full Text PDF

The CN bond isomerization/modulation as a fluorescence signalling mechanism was explored by studying the photophysical properties of conformationally restricted molecules. From the beginning, the CN bond isomerization method has attracted the attention of researchers owing to its simplicity, high selectivity, and sensitivity in fluorescence evaluation. Continuous developments in the field of sensing using CN bond-containing compounds have been achieved the customization of the isomerization process around the CN bond in numerous ways, and the results were obtained in the form of specific discrete photophysical changes.

View Article and Find Full Text PDF

Maintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water.

View Article and Find Full Text PDF

A Schiff base 5-(2-hydroxy-3-methoxybenzylidieneamino)-1--imidazole-4-carboxamide () comprising multibinding sites has been synthesized with the aim of fabricating a supramolecular gel. The gelator was characterized by FT-IR, H & C NMR, and ESI-MS techniques and also formed a [Ni(L)] complex. The gelation property of was investigated with various metal ions, wherein Ni(II) selectively forms a mechanically and thermally stable supramolecular metallogel () in the presence of a triethylamine base in DMF-MeOH media.

View Article and Find Full Text PDF

One of the critical multimedia analysis problems in today's digital world is video summarization (VS). Many VS methods have been suggested based on deep learning methods. Nevertheless, These are inefficient in processing, extracting, and deriving information in the minimum amount of time from long-duration videos.

View Article and Find Full Text PDF

Background And Objectives: Physiological loading-induced mechanical environments regulate bone modeling and remodeling. Thus, loading-induced normal strain is typically considered a stimulus to osteogenesis. However, several studies noticed new bone formation near the sites of minimal normal strain, e.

View Article and Find Full Text PDF

Progression of blood-borne viruses through bloodstream: A comparative mathematical study.

Comput Methods Programs Biomed

April 2023

Department of Mathematics, National Institute of Technology Uttarakhand, Sringar 246174, India. Electronic address:

Background And Objectives: Blood-borne pathogens are contagious microorganisms that can cause life-threatening illnesses, and are found in human blood. It is crucial to examine how these viruses spread through blood flow in the blood vessel. Keeping that in view, this study aims to determine how blood viscosity, and diameter of the viruses can affect the virus transmission through the blood flow in the blood vessel.

View Article and Find Full Text PDF

In this paper, we developed a mathematical model to simulate virus transport through a viscous background flow driven by the natural pumping mechanism. Two types of respiratory pathogens viruses (SARS-Cov-2 and Influenza-A) are considered in this model. The Eulerian-Lagrangian approach is adopted to examine the virus spread in axial and transverse directions.

View Article and Find Full Text PDF

Synthesis of a bidentate N,O-donor Schiff base fluorescent ligand 5-(diethylamino-2-((4-(diethylamino-2-((4-(diethylamino)phenylimino)ethyl)phenol) (HL) adopting a new preparation procedure and its complexes with Ni(II) (1) and Zn(II) (2) has been illustrated. Structures of HL and 1 have been elucidated using X-ray single crystal analysis. Moreover, HL leads to the formation of a mechanically stable Ni(II)-gel (MG) upon treatment with Ni(NO)·6HO in the presence of triethylamine (TEA) using THF/MeOH (1 : 1) solvents at rt.

View Article and Find Full Text PDF

Introduction: Traditional methods of prosthesis fabrication are not efficient and user centric and are made for common purposes without focusing on individual demands of user which leads to rejection of prosthesis for long-term use. Utilizing advanced additive manufacturing techniques for fabrication of prosthesis makes the development process user centric and covers all the user demands thus providing better fit, comfort, and more stable gait rehabilitation for the user.

Areas Covered: The articles reporting fabrication of lower limb prosthesis and its socket are included in the study.

View Article and Find Full Text PDF

Rare earth metals play a conspicuous role in magnetic resonance imaging (MRI) for detecting cancerous cells. The alkali metal potassium is a neurotransmitter in the sodium-potassium pump in biomedical sciences. This unique property of rare earth metals and potassium drew our attention to carry forward this study.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals are often corrupted by undesirable sources like electrooculogram (EOG) artifacts, which have a substantial impact on the performance of EEG-based systems. This study proposes a new singular spectrum analysis (SSA)-non-negative matrix factorization (NMF)-based ocular artifact removal (SNOAR) method to suppress ocular artifacts from multi-channel EEG signals. First, SSA was used to estimate EOG artifacts using a small subset of frontal electrodes.

View Article and Find Full Text PDF

Pumping devices with the electrokinetics phenomena are important in many microscale transport phenomena in physiology. This study presents a theoretical and numerical investigation on the peristaltic pumping of non-Newtonian Sutterby nanofluid through capillary in presence of electromagnetohydrodynamics. Here blood (Sutterby fluid) is taken as a base fluid and nanofluid is prepared by the suspension of graphene oxide nanoparticles in blood.

View Article and Find Full Text PDF

Due to the severity of COVID-19, vaccination campaigns have been or are underway in most parts of the world. In the current circumstances, it is obligatory to examine the response of vaccination on transmission of the SARS-CoV-2 virus when there are many vaccines available. Considering the importance of vaccination, a dynamic model has been proposed to provide an insight in the same direction.

View Article and Find Full Text PDF

A new fluorescent zinc (II) complex-based probe 1 encompassing a Schiff's base (E)-2-methoxy-6-((2-[5-nitropyridin-2-ylamino]ethylimino)methyl)phenol (HL) was designed, synthesized, and used for the highly selective detection of Cu . Ligand HL and complex 1 were characterized using various spectroscopic techniques such as H, C-NMR, and FTIR spectroscopy, high-resolution mass spectronomy (HRMS), UV/visible light spectroscopy, and fluorescence studies. Ligand HL did not exhibit any considerable change in fluorescence in the presence of various cations.

View Article and Find Full Text PDF

Nonlinear dynamics is an exciting approach to describe the dynamical practices of COVID-19 disease. Mathematical modeling is a necessary method for investigating the dynamics of epidemic diseases. In the current article, an effort has been made to cultivate a novel COVID-19 compartment mathematical model by incorporating vaccinated populations.

View Article and Find Full Text PDF

Design, synthesis, characterization, and ion detection studies of two ferrocene-appended Schiff bases namely N-(2-[ferrocenylamino]ethyl)-5-nitropyridin-2-amine (1) and ferrocenylamino-1H-imidazole-4-carboxamide (2) been reported. Both the chemosensors have been thoroughly characterized using Fourier transfer infrared, H and C nuclear magnetic resonance, high resolution mass spectrometry, and ultraviolet/visible (UV/visible) and fluorescence spectral techniques. Probes 1 and 2 were designed with the aim of appending the ferrocenyl group with pyridine ring having an amine substitution (for 1) and imidazole ring with an amide substitution (for 2).

View Article and Find Full Text PDF

Modern lubrication systems are increasingly deploying smart (functional) materials. These respond to various external stimuli including electrical and magnetic fields, acoustics, light etc. Motivated by such developments, in the present article unsteady electro-magnetohydrodynamics squeezing flow and heat transfer in a smart ionic viscous fluid intercalated between parallel plates with zeta potential effects is examined.

View Article and Find Full Text PDF

Bioinspired Pumping Flow Driven by Rhythmic Membrane Propulsion in a Porous Medium.

Crit Rev Biomed Eng

April 2023

Department of Mechanical Engineering, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.

Investigation concerning the bioinspired pumping flow of viscous fluids in the porous region using Darcy's law is demonstrated in the present article. The rhythmic membrane contraction propels fluids in the porous microchannel. The periodic contraction of the membrane is utilized in the present analysis to introduce the unique pumping mechanism.

View Article and Find Full Text PDF

The objective of the proposed work is to design a biosensor that monitors hemoglobin (Hb) concentration using the combination of nanolayer, i.e., barium titanate (BaTiO) and antimonene based on surface plasmon resonance (SPR) technique.

View Article and Find Full Text PDF

Computational fluid dynamics (CFD) is numerical strategy developed for simulating the behavior of liquid and gas flow. CFD may be applied starting from aerospace, engine design, vehicle aerodynamics, power plants and chemical industries for analyzing and solving relevant system design and process issues. Biogas produced during anaerobic digestion (AD) is sustainable and renewable alternative to fossil fuels.

View Article and Find Full Text PDF