81 results match your criteria: "National Institute of Technology Meghalaya[Affiliation]"

In recent decades, polysaccharide-based hydrogels have gained significant attention due to their natural biocompatibility, biodegradability, and non-toxicity. The potential for using polysaccharides to synthesize hydrogels is due to their ability to support cell proliferation, which is important for practical applications, particularly in the biomedical field. In this study, we have synthesized a chitosan-α-naphthal hydrogel film using a cost-effective one-step synthesis approach.

View Article and Find Full Text PDF

Acute leukemia is characterized by the swift proliferation of immature white blood cells (WBC) in the blood and bone marrow. It is categorized into acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), depending on whether the cell-line origin is lymphoid or myeloid, respectively. Deep learning (DL) and artificial intelligence (AI) are revolutionizing medical sciences by assisting clinicians with rapid illness identification, reducing workload, and enhancing diagnostic accuracy.

View Article and Find Full Text PDF

Coal mining activities greatly damage water resources, explicitly concerning water quality. The adverse effects of coal mining and potential routes for contaminants to migrate, either through surface water or infiltration, into the groundwater table. Dealing with pollution from coal mining operations is a significant surface water contamination concern.

View Article and Find Full Text PDF

Excessive use of food coloring agents in the food industry to make the food more attractive or improve the taste has caused various health and ecological problems. Therefore, it is necessary to develop a reliable, sensitive, and selective sensing probe to detect food dyes in different food products for future industrial processing and biosafety. In recent decades, surface-functionalized quantum dots (QDs), owing to their unique optical properties, have gained tremendous interest for a wide range of applications, including biomedical, bioimaging and sensing applications.

View Article and Find Full Text PDF

Modelling and prediction of air quality facilitates the drafting of efficient guidelines and, in turn, proper management of adversely affected areas. In order to depict the air pollutants in urban centres, this research analyses two modelling tools: AERMOD and CALINE4. Both technologies provide distinct capabilities in the modelling of air quality from vehicular and other emissions.

View Article and Find Full Text PDF

This study investigates the interaction between daphnetin and ovalbumin (OVA) as well as its potential to inhibit OVA fibrillation using both spectroscopic and computational analysis. A moderate binding affinity of 1 × 10 M was observed between OVA and daphnetin, with a static quenched mechanism identified during the fluorescence quenching processes. Metal ions' (Cu and Zn) presence led to an increase in the binding affinities of daphnetin toward OVA, mirroring a similar trend observed with the pH variation.

View Article and Find Full Text PDF

Lobeline (LOB), a naturally occurring alkaloid, has a broad spectrum of pharmacological activities and therapeutic potential, including applications in central nervous system disorders, drug misuse, multidrug resistance, smoking cessation, depression, and epilepsy. LOB represents a promising compound for developing treatments in various medical fields. However, despite extensive pharmacological profiling, the biophysical interaction between the LOB and proteins remains largely unexplored.

View Article and Find Full Text PDF

The deposition of energy-harvesting MnO onto the "Cu" electrode is reported using pulsed laser ablation at the manganese-water interface. Conventionally, laser-induced plasma deposition is carried out by orthogonally placing the substrate (electrodes) in the plasma expansion. Here, underwater material deposition is observed on electrodes placed parallel to the plasma expansion.

View Article and Find Full Text PDF

DNA is essential in biological processes as it directs transcription and translation assisting in RNA and protein synthesis. Extended periods of elevated blood glucose levels cause non-enzymatic DNA glycation, which results in the formation of DNA-AGEs and the production of free radicals, causing structural perturbation of DNA. In this work, we have investigated the glycation of calf thymus (ct-DNA) DNA and examined its inhibition by two anthraquinone derivatives, purpurin and aloin.

View Article and Find Full Text PDF

Although cadmium-based quantum dots (QDs) are highly promising candidates for numerous biological applications, their intrinsic toxicity limits their pertinency in living systems. Surface functionalization of QDs with appropriate molecules could reduce the toxicity level. Herein, we have synthesized the smaller sized (1-5 nm) aqueous-compatible biogenic CdTe QDs using human serum albumin (HSA) as a surface passivating agent via a greener approach.

View Article and Find Full Text PDF

Conventional DC-DC boost converters have played a vital role in electric vehicle (EVs) powertrains by enabling the necessary voltage to increase to meet the needs of electric motors. However, recent developments in high-gain converters have introduced new possibilities with enhanced voltage amplification capabilities and efficiency. This study discusses and evaluates the state-of-the-art high-gain DC-DC converters for EV applications based on the Quadratic Boost Converter (QBC).

View Article and Find Full Text PDF

The fabrication of shape-selective coinage metal nanoclusters (MNCs) has promising applications due to their exceptional physical and chemical molecule-like properties. However, the stability of the specific geometry of the nanoclusters, such as their cubic shapes, is unclear and has been unraveled by assessing the nanoclusters' interactions with different environments. In this work, we investigate the morphological stability of cubic structured, coinage metal nanoclusters of varying sizes ranging from 14 to 1099 atoms.

View Article and Find Full Text PDF

Chemical dynamics Simulation studies on benzene dimer (Bz2) and benzene-hexachlorobenzene (Bz-HCB) as performed in the past suggest that the coupling between the monomeric (intramolecular) vibrational modes and modes generated due to the association of two monomers (intermolecular) has to be neither strong nor weak for a fast dissociation of the complex. To find the optimum coupling, four complexes are taken into consideration in this work, namely, benzene-monofluorobenzene, benzene-monochlorobenzene, benzene-trifluorobenzene (Bz-TFB), and benzene-trichlorobenzene. Bz-TFB has the highest rate of dissociation among all seven complexes, including Bz2, Bz-HCB, and Bz-HFB (HFB stands for hexafluorobenzene).

View Article and Find Full Text PDF

Flavonoids are significant dietary components and have ability to coordinate with metal ions to produce novel drug discovery leads that are superior to those of the parent flavonoids. Here, in this report, we have synthesized chrysin-Cu(II) complex (as per reported article) and characterized it further with different analytical techniques. The synthesized complex was evaluated for radical scavenging and cell cytotoxicity studies where it exhibited enhanced activity as compared to bare chrysin.

View Article and Find Full Text PDF

In order to better understand the bioavailability and biocompatibility of polyphenol-assisted surface-modified bioengineered nanoparticles in nanomedicine applications, here, we address a series of photophysical experiments to quantify the binding affinity of serum albumin toward polyphenol-capped gold nanoparticles. For this, two different gold nanoparticles (AuNPs) were synthesized via the green synthesis approach, where curcumin and turmeric extract act as reducing as well as capping agents. The size, surface charge, and surface plasmon bands of the AuNPs were highly affected by the adsorption of human serum albumin (HSA) during protein corona formation, which was investigated using dynamic light scattering (DLS), ξ-potential, ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM) measurements.

View Article and Find Full Text PDF

Esculetin is a well-known coumarin derivative found abundantly in nature possessing an extensive array of pharmacological and therapeutic properties. Consequently, to comprehend its molecular recognition mechanism, our objective is to conduct a complete investigation of its interactions with the nucleic acid, specifically ct-DNA, and t-RNA, using spectroscopic and computational techniques. The intrinsic fluorescence of esculetin is quenched when it interacts with ct-DNA and t-RNA, and this occurs through a static quenching mechanism.

View Article and Find Full Text PDF

Cancer is a condition in which abnormal cells uncontrollably split and damage the body tissues. Hence, detecting cancer at an early stage is highly essential. Currently, medical images play an indispensable role in detecting various cancers; however, manual interpretation of these images by radiologists is observer-dependent, time-consuming, and tedious.

View Article and Find Full Text PDF

Chemical dynamics simulations on the post-transition state dynamics of ozonolysis of catechol are performed in this article using a newly developed QM + MM simulation model. The reaction is performed in a bath of N molecules equilibrated at 300 K. Two bath densities, namely, 20 and 324 kg/m, are considered for the simulation.

View Article and Find Full Text PDF

Biomaterials are engineered to develop an interaction with living cells for therapeutic and diagnostic purposes. The last decade reported a tremendously rising shift in the requirement for miniaturized biomedical implants exhibiting high precision and comprising various biomaterials such as non-biodegradable titanium (Ti) alloys and biodegradable magnesium (Mg) alloys. The excellent mechanical properties and lightweight characteristics of Mg AZ91D alloy make it an emerging material for biomedical applications.

View Article and Find Full Text PDF

In this paper, we report the fundamental electrical transport properties measured in BiSe-AgMnOOH nanocomposite disc, which is prepared for the first time by convenient low temperature solution-phase chemistry in conjunction with redox-mediated methodology. The comparative structural and morphological analyses for the nanocomposite with pristine BiSe are comprehensively investigated by different material characterization techniques. The results demonstrate the successful composite fabrication between the BiSe, Ag and γ-MnOOH components.

View Article and Find Full Text PDF
Article Synopsis
  • Machine Learning (ML) is increasingly being applied in computational chemistry to enhance simulations and predict reaction behaviors, specifically in studying how certain chemical complexes dissociate over time.
  • Three different ML algorithms—Decision-Tree-Regression (DTR), Multi-Layer Perceptron, and Support Vector Regression—were tested to estimate the unimolecular dissociation times of various benzene derivative complexes based on their vibrational energy attributes at an excitation temperature of 1500 K.
  • Results showed that a DTR algorithm trained on fewer simulation points (700) can effectively match the dissociation rate constant achieved from a larger set (1500 trajectories) and can also predict results at different temperatures using the derived data, demonstrating the potential of ML in computational chemistry research
View Article and Find Full Text PDF

Essential genes are essential for the survival of various species. These genes are a family linked to critical cellular activities for species survival. These genes are coded for proteins that regulate central metabolism, gene translation, deoxyribonucleic acid replication, and fundamental cellular structure and facilitate intracellular and extracellular transport.

View Article and Find Full Text PDF

Biosynthesized noble metal nanoparticles have been of recent interest due to their broad implications in the future biomedicinal field. We have synthesized silver nanoparticle using turmeric-extract and its major component curcumin as reducing and stabilizing agents. Further, we have investigated the protein-NPs interaction focusing the inspection of the role of biosynthesized AgNPs on any conformational changes of the protein, binding and thermodynamic parameters using spectroscopic techniques.

View Article and Find Full Text PDF

Deep learning-based methods have been proven excellent performance in detecting pornographic images/videos flooded on social media. However, in a dearth of huge yet well-labeled datasets, these methods may suffer from under/overfitting problems and may exhibit unstable output responses in the classification process. To deal with the issue we have suggested an automatic pornographic image detection method by utilizing transfer learning (TL) and feature fusion.

View Article and Find Full Text PDF

Biocompatible quantum dots (QDs) have attracted a lot of attention due to their potential biological applications (drug delivery, sensing and diagnosis). Here, we have synthesized 2-4 nm sized biocompatible zinc sulphide (ZnS) QDs using a plant leaf extract as an immobilizing and stabilizing agent a green route. We have investigated the biological effects of ZnS QDs in a variety of applications, including (1) anti-bacterial activity, (2) cell cytotoxicity, (3) bio-sensing and (4) protein binding.

View Article and Find Full Text PDF