5 results match your criteria: "National Institute of Research and Development in Technical Physics[Affiliation]"

Obesity and osteoarthritis (OA) are increasingly prevalent conditions that are intricately linked, with each exacerbating the other's pathogenesis and worsening patient outcomes. This review explores the dual impact of obesity on OA, highlighting the role of excessive weight in aggravating joint degeneration and the limitations OA imposes on physical activity, which further perpetuates obesity. The role of muscle tissue, particularly the release of myokines during physical activity, is examined in the context of OA and obesity.

View Article and Find Full Text PDF

With the increasing burden of osteoarthritis worldwide, cost efficient and reliable models are needed to enable the development of innovative therapies or therapeutic interventions. Ex vivo models have been identified as valuable modalities in translational research, bridging the gap between in vitro and in vivo models. Osteocartilaginous explants from Osteoarthritis (OA) patients offer an exquisite opportunity for studying OA progression and testing novel therapies.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a progressive chronic disease affecting the articular joints, leading to pain and disability. Unlike traditional views that primarily link OA to aging, recent understanding portrays it as a multifactorial degenerative disease of the entire joint. Emerging research highlights metabolic and immune dysregulation in OA pathogenesis, emphasizing the roles of obesity, dyslipidemia, and insulin resistance in altering joint homeostasis.

View Article and Find Full Text PDF

The incidence and prevalence of hearing loss is increasing globally at an accelerated pace. Hair cells represent the sensory receptors of auditory and vestibular systems. Hair cell absence, loss or degeneration due to congenital diseases, trauma, toxicity, infection or advancing age, results in disabling hearing loss.

View Article and Find Full Text PDF

: Based on stem cells, bioactive molecules and supportive structures, regenerative medicine (RM) is promising for its potential impact on field of hearing loss by offering innovative solutions for hair cell rescue. Nanotechnology has recently been regarded as a powerful tool for accelerating the efficiency of RM therapeutic solutions. Adipose-derived mesenchymal cells (ADSCs) have already been tested in clinical trials for their regenerative and immunomodulatory potential in various medical fields; however, the advancement to bedside treatment has proven to be tedious.

View Article and Find Full Text PDF