37 results match your criteria: "National Institute of Metrological Research[Affiliation]"

Broadly Accessible 3D Skin Model as a Comprehensive Platform for Antibacterial Therapy Screening.

ACS Appl Mater Interfaces

December 2024

Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy.

Skin infections are currently a worldwide emergency as antibiotic-resistant bacteria are spreading, leading to the ineffectiveness of most antibiotics and antibacterial strategies. Consequently, there is an urgency of developing and testing innovative antibacterial therapies. As traditional 2D cell culture and planktonic bacteria culture can be obsolete due to their incapability of resembling the complex infection environment, 3D skin models can be a powerful tool to test and validate therapies.

View Article and Find Full Text PDF

Determining the Permeability of Porous Bioceramic Scaffolds: Significance, Overview of Current Methods and Challenges Ahead.

Materials (Basel)

November 2024

Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.

The "architectural suitability" of scaffolds for bone tissue engineering is commonly evaluated by assessing the pore volume and the mean pore size (or pore size distribution, if possible) and comparing these values with the reference ranges of human cancellous bone. However, these two parameters cannot precisely describe the complex architecture of bone scaffolds and just provide a preliminary comparative criterion. Permeability is suggested as a more comprehensive and significant parameter to characterize scaffold architecture and mass transport capability, being also related to bone in-growth and, thus, functional properties.

View Article and Find Full Text PDF

In this work the effect of combining ultrasound (US) hyperthermia (HT) with radiotherapy (RT) was investigated. The treatment was applied to a GBM xenograft nude mouse model obtained by injecting U87 luc+ cells. The combined treatment group received 6 Gy and HT at for 8 min.

View Article and Find Full Text PDF

Sensors based on MEMS technology, in particular Inertial Measurement Units (IMUs), when installed on vehicles, provide a real-time full estimation of vehicles' state vector (e.g., position, velocity, yaw angle, angular rate, acceleration), which is required for the planning and control of cars' trajectories, as well as managing the in-car local navigation and positioning tasks.

View Article and Find Full Text PDF

Alpha-gal syndrome (AGS) is a mammalian meat allergy associated with tick bites and specific IgE to the oligosaccharide galactose-α-1,3-galactose (α-gal). Recent studies have shown that 10-20% of AGS patients also react to the dairy proteins. Considering the already described role of the meat lipid fraction in AGS manifestations, the aim of this work has been to investigate whether the milk fat globule proteins (MFGPs) could be involved in AGS.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) are gaining popularity due to their high efficiency and low-cost fabrication. In recent decades, noticeable research efforts have been devoted to improving the stability of these cells under ambient conditions. Moreover, researchers are exploring new materials and fabrication techniques to enhance the performance of PSCs under various environmental conditions.

View Article and Find Full Text PDF

Adaptable test bench for ASTM-compliant permeability measurement of porous scaffolds for tissue engineering.

Sci Rep

January 2024

Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Turin, Italy.

Intrinsic permeability describes the ability of a porous medium to be penetrated by a fluid. Considering porous scaffolds for tissue engineering (TE) applications, this macroscopic variable can strongly influence the transport of oxygen and nutrients, the cell seeding process, and the transmission of fluid forces to the cells, playing a crucial role in determining scaffold efficacy. Thus, accurately measuring the permeability of porous scaffolds could represent an essential step in their optimization process.

View Article and Find Full Text PDF

Evaluation of the cytotoxic and immunomodulatory effects of sonodynamic therapy in human pancreatic cancer spheroids.

J Photochem Photobiol B

February 2024

Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy. Electronic address:

Sonodynamic therapy (SDT) exploits the energy generated by ultrasound (US) to activate sound-sensitive drugs (sonosensitizers), leading to the generation of reactive oxygen species (ROS) and cancer cell death. Two-dimensional (2D) and three-dimensional (3D) cultures of human pancreatic cancer BxPC-3 cells were chosen as the models with which to investigate the therapeutic effects of the US-activated sonosensitizer IR-780 as pancreatic cancer is still one of the most lethal types of cancer. The effects of SDT, including ROS production, cancer cell death and immunogenic cell death (ICD), were extensively investigated.

View Article and Find Full Text PDF

An innovative spectroscopic method that allows to chemically and structurally characterize viruses directly in suspension within few minutes was developed. A library of five different plant viruses was obtained combining dielectrophoresis (DEP), performed with a device specifically designed to capture and agglomerate virus particles, and Raman spectroscopy to provide a chemical fingerprint of virions. The tested viruses, purified from infected plants, were chosen for their economic impact on horticultural crops and for their different morphological and structural features.

View Article and Find Full Text PDF

Acoustic metamaterials (AMMs) offer innovative solutions for physics and engineering problems, allowing lighter, multiphysics, and sustainable systems. They are usually studied analytically or numerically and then tested on prototypes. For this reason, additive manufacturing (AM) techniques are a popular way of quickly realising AMMs' innovative geometrical designs.

View Article and Find Full Text PDF

In the field of vibration monitoring and control, the use of low-cost multicomponent MEMS-based accelerometer sensors is nowadays increasingly widespread. Such sensors allow implementing lightweight monitoring systems with low management costs, low power consumption and a small size. However, for the monitoring systems to provide trustworthy and meaningful data, the high accuracy and reliability of sensors are essential requirements.

View Article and Find Full Text PDF

Ovarian cancer (OC) is characterised by the highest mortality of all gynaecological malignancies, frequent relapses, and the development of resistance to drug therapy. Sonodynamic therapy (SDT) is an innovative anticancer approach that combines a chemical/drug (sonosensitizer) with low-intensity ultrasound (US), which are both harmless per sé, with the sonosensitizer being acoustically activated, thus yielding localized cytotoxicity often via reactive oxygen species (ROS) generation. Doxorubicin (Doxo) is a potent chemotherapeutic drug that has also been recommended as a first-line treatment against OC.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are widely studied as therapeutic agents due to their broad-spectrum efficacy against infections. However, their clinical use is hampered by the low in vivo bioavailability and systemic toxicity. Such limitations might be overcome by using appropriate drug delivery systems.

View Article and Find Full Text PDF

Sonodynamic therapy is a bimodal therapeutic approach in which a chemical compound and ultrasound (US) synergistically act to elicit oxidative damage, triggering cancer cell death. Despite encouraging results, mainly for anticancer treatment, sonodynamics is still far from having a clinical application. Therefore, to close the gap between the bench and bedside, more in vivo studies are needed.

View Article and Find Full Text PDF

Sonodynamic Therapy (SDT) is a new anticancer strategy based on ultrasound (US) technique and is derived from photodynamic therapy (PDT); SDT is still, however, far from clinical application. In order to move this therapy forward from bench to bedside, investigations have been focused on treatment selectivity between cancer cells and normal cells. As a result, the effects of the porphyrin activation by SDT on cancer (HT-29) and normal (HDF 106-05) cells were studied in a co-culture evaluating cell cytotoxicity, reactive oxygen species (ROS) production, mitochondrial function and plasma membrane fluidity according to the bilayer sonophore (BLS) theory.

View Article and Find Full Text PDF

In this work, the experimental method and the calculation model for the determination of indentation moduli, indentation work, and indentation creep of metallic materials, by means of macroscale-level forces provided by a primary hardness standard machine at the National Institute of Metrological Research (INRIM) at the at room temperature were described. Indentation moduli were accurately determined from measurements of indentation load, displacement, contact stiffness and hardness indentation imaging and from the slope of the indentation unloading curve by applying the Doerner-Nix linear model; indentation work, representing the mechanical work spent during the force application of the indentation procedure, was determined by calculating the areas under the loading-unloading indentation curve, through fitting experimental data with a polynomial law. Measurements were performed with a pyramidal indenter (Vickers test).

View Article and Find Full Text PDF

To investigate near infrared-induced phototoxicity toward lung cancer cells, and the biodegradability and effect on immune cells of glucose-derived carbon nanoparticles (CNPs). The human A549 lung adenocarcinoma cell line was used as a model to study the phototoxicity of CNPs. The biodegradability and the effect on immune cells was demonstrated in primary human neutrophils and macrophages.

View Article and Find Full Text PDF

Proper microstructural and transport properties are fundamental requirements for a suitable scaffold design and realization in tissue engineering applications. Scaffold microstructure (i.e.

View Article and Find Full Text PDF

The potential of surface-enhanced Raman scattering (SERS) has been investigated for the rapid analysis of two representative organotin compounds (OTCs): dibutyltin maleate (DTM) and tributyltin chloride (TBT), after migration tests from polyvinyl chloride (PVC), as a model food packaging material in aqueous food simulant (acetic acid 3% w/v). OTCs, often used as heat stabilizers additives for PVC, are classified as endocrine disrupting chemicals (EDCs) and their migration potential has to be controlled in compliance with the normative prescriptions for food contact materials. In this study, colloidal silver nanoparticles (AgNPs) were applied as liquid SERS substrate for direct-in-liquid analysis of food simulant after standardized migration tests of PVC samples spiked with OTCs.

View Article and Find Full Text PDF

Sonodynamic therapy is an emerging approach that uses low-intensity ultrasound to activate a sonosensitizer agent triggering its cytotoxicity for selective cancer cell killing. Several molecules have been proposed as sonosensitizer agents, but most of these, as chlorophyll, are strongly hydrophobic with a low selectivity towards cancer tissues. Nanocarriers can help to deliver more efficiently the sonosensitizer agents in the target tumor site, increasing at the same time their sonodynamic effect, since nanosystems act as cavitation nuclei.

View Article and Find Full Text PDF

Sonodynamic therapy (SDT) is an innovative anticancer approach, based on the excitation of a given molecule (usually a porphyrin) by inertial acoustic cavitation that leads to cell death the production of reactive oxygen species (ROS). This study aims to prepare and characterize nanosystems based on porphyrin grafted carbon nanotubes (SWCNTs), to understand some aspects of the mechanisms behind the SDT phenomenon. Three different porphyrins have been covalently linked to SWCNTs using either Diels-Alder or 1,3-dipolar cycloadditions.

View Article and Find Full Text PDF

Several studies have shown so far that poor acoustics inside classrooms negatively affects the teaching and learning processes, especially at the lowest grades of education. However, the extent to which noise exposure or excessive reverberation affect well-being of children at school in their early childhood is still unanswered, as well as their awareness of noise disturbance. This work is a pilot study to investigate to which extent classroom acoustics affects the perceived well-being and noise disturbance in first graders.

View Article and Find Full Text PDF

Flexible and transparent substrates are emerging as low cost and easy-to-operate support for surface-enhanced Raman spectroscopy (SERS). In particular, in situ SERS detection approach for surface characterization in transmission modality can be efficiently employed for non-invasive analysis of non-planar surfaces. Here we propose a new methodology to fabricate a homogenous, transparent, and flexible SERS membrane by the assistance of a thin TiO porous layer deposited on the PDMS surface, which supports the uniform loading of gold nanoparticles over large area.

View Article and Find Full Text PDF

A simple procedure for field fish sample pretreatment was developed. This treatment in combination with square wave anodic stripping voltammetry (SW-ASV) with solid gold electrodes (SGE) and gold nanoparticle-modified glassy carbon electrodes (AuNPs-GCE) was applied for the determination of total mercury content. A certified reference material (CRM, , ten freeze-dried samples of canned tuna and two fresh fish samples were analysed both with a bench-top voltammetric analyser after microwave digestion and with a portable potentiostat after mild eating using a small commercial food warmer.

View Article and Find Full Text PDF

The aim of this study was to evaluate cytotoxicity (WST-1 assay), LDH release (LDH assay) and genotoxicity (Comet assay) of three engineered TiO-NPs with different shapes (bipyramids, rods, platelets) in comparison with two commercial TiO-NPs (P25, food grade). After NPs characterization (SEM/T-SEM and DLS), biological effects of NPs were assessed on BEAS-2B cells in presence/absence of light. The cellular uptake of NPs was analyzed using Raman spectroscopy.

View Article and Find Full Text PDF