33 results match your criteria: "National Institute of Floricultural Science[Affiliation]"

The most widely used gene editing technology-the CRISPR/Cas9 system-employs a bacterial monomeric DNA endonuclease known as clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) and single-guide RNA (sgRNA) that directs Cas9 to a complementary target DNA. However, introducing mutations into higher polyploid plant species, especially for species without genome information, has been difficult. Chrysanthemum morifolium (chrysanthemum) is one of the most important ornamental plants, but it is a hexaploid with a large genome; moreover, it lacks whole-genome information.

View Article and Find Full Text PDF

Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown.

View Article and Find Full Text PDF

Anthocyanin biosynthesis is often regulated by MYB transcription factors that are classified into AN2 and C1 subgroups. The AN2 subgroup regulates the late genes in the anthocyanin biosynthesis pathway of eudicots, whereas the C1 subgroup controls both early and late genes in monocots. Anthocyanin is a major pigment in Asiatic hybrid lilies (Lilium spp.

View Article and Find Full Text PDF

We identified a Torenia fournieri Lind. mutant (no. 252) that exhibited a sepaloid phenotype in which the second whorls were changed to sepal-like organs.

View Article and Find Full Text PDF

miR156/157 is a small RNA molecule that is highly conserved among various plant species. Overexpression of miR156/157 has been reported to induce bushy architecture and delayed phase transition in several plant species. To investigate the effect of miR157 overexpression in a horticultural plant, and to explore the applicability of miRNA to molecular breeding, we introduced Arabidopsis MIR157b (AtMIR157b) into torenia (Torenia fournieri).

View Article and Find Full Text PDF

While heavy-ion beam irradiation is becoming popular technology for mutation breeding in Japan, the combination with genetic manipulation makes it more convenient to create greater variation in plant phenotypes. We have succeeded in producing over 200 varieties of transgenic torenia (Torenia fournieri Lind.) from over 2,400 regenerated plants by this procedure in only 2 years.

View Article and Find Full Text PDF

A protocol for transformation of Torenia.

Methods Mol Biol

July 2012

National Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.

This chapter describes an Agrobacterium tumefaciens-mediated transformation protocol for torenia, a plant that has several useful characteristics and is primarily used for ornamental and experimental purposes. Leaf segments of torenia were co-cultured with A. tumefaciens containing a vector plasmid for 7 days at 22°C under dark conditions on Murashige and Skoog (MS) medium containing 1 mg/L benzyladenine, 1 mg/L indoleacetic acid, and 100 μM acetosyringone.

View Article and Find Full Text PDF

Chrysanthemum is a typical short-day (SD) plant that responds to shortening daylength during the transition from the vegetative to the reproductive phase. FLOWERING LOCUS T (FT)/Heading date 3a (Hd3a) plays a pivotal role in the induction of phase transition and is proposed to encode a florigen. Three FT-like genes were isolated from Chrysanthemum seticuspe (Maxim.

View Article and Find Full Text PDF

Carotenoid isomerase is key determinant of petal color of Calendula officinalis.

J Biol Chem

January 2012

National Institute of Floricultural Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-8519, Japan. Electronic address:

Orange petals of calendula (Calendula officinalis) accumulate red carotenoids with the cis-configuration at the C-5 or C-5' position (5-cis-carotenoids). We speculated that the orange-flowered calendula is a carotenoid isomerase (crtiso) loss-of-function mutant that impairs the cis-to-trans conversion of 5-cis-carotenoids. We compared the sequences and enzyme activities of CRTISO from orange- and yellow-flowered calendulas.

View Article and Find Full Text PDF

A new tetraglycosyl flavonol, 3-O-[2-O-xylosyl-6-O-(3-O-glucosyl-rhamnosyl) glucosyl] kaempferol was isolated from pale purplish-pink petals of Wabisuke camellia cv. Tarokaja with three known flavonols. It was named urakunoside after the species name of Tarokaja, Camellia uraku.

View Article and Find Full Text PDF

Homeotic class B genes GLOBOSA (GLO)/PISTILLATA (PI) and DEFICIENS (DEF)/APETALA3 (AP3) are involved in the development of petals and stamens in Arabidopsis. However, functions of these genes in the development of floral organs in torenia are less well known. Here, we demonstrate the unique floral phenotypes of transgenic torenia formed due to the modification of class B genes, TfGLO and TfDEF.

View Article and Find Full Text PDF

Several cognitive therapies have been developed for patients with schizophrenia. However, little is known about the outcomes of these therapies in terms of non-verbal/visuospatial working memory, even though this may affect patients' social outcomes. In the present pilot study, we investigated the effect of a structured floral arrangement (SFA) programme, where participants were required to create symmetrical floral arrangements.

View Article and Find Full Text PDF

Petal growth associated with flower opening depends on cell expansion. To understand the role of soluble carbohydrates in petal cell expansion during flower opening, changes in soluble carbohydrate concentrations in vacuole, cytoplasm and apoplast of petal cells during flower opening in rose (Rosa hybrida L.) were investigated.

View Article and Find Full Text PDF

Japanese morning glory (Ipomoea nil) is a representative plant lacking a yellow-flowered cultivar, although a few wild Ipomoea species contain carotenoids in their petals such as Ipomoea sp. (yellow petals) and I. obscura (pale-yellow petals).

View Article and Find Full Text PDF

Petal senescence is a type of programmed cell death (PCD) that is tightly regulated by multiple genes. We recently reported that a putative membrane protein, InPSR26, regulates progression of PCD during petal senescence in Japanese morning glory (Ipomoea nil). Reduced InPSR26 expression in transgenic plants (PSR26r lines) resulted in accelerated petal senescence with hastened development of PCD symptoms, and transcript levels of autophagy-related genes were reduced in the petals.

View Article and Find Full Text PDF

In senescent petals of Ipomoea nil, we investigated the expression of genes showing homology to genes involved in animal programmed cell death (PCD). Three encoded proteins were homologous to apoptotic proteins in animals: Bax inhibitor-1 (BI-1), a vacuolar processing enzyme (VPE; homologous to caspases) and a monodehydroascorbate reductase [MDAR; homologous to apoptosis-inducing factor (AIF)]. AIFs harbor an oxidoreductase domain and an apoptotic domain.

View Article and Find Full Text PDF

Chrysanthemum stunt viroid (CSVd), a noncoding RNA, is known to cause chrysanthemum stunt disease, which affects the yield of flowers. To gain insights into CSVd replication, infection, and the reasons for the spreading of CSVd disease in chrysanthemum plants, we prepared linear CSVd RNA and analyzed its ability to cause disease in chrysanthemum plants. We found that linear CSVd replicated as efficiently as CSVd RNA isolated from the infected chrysanthemum plants.

View Article and Find Full Text PDF

The onset and progression of petal senescence, which is a type of programmed cell death (PCD), are highly regulated. Genes showing changes in expression during petal senescence in Japanese morning glory (Ipomoea nil) were isolated and examined to elucidate their function in PCD. We show here that a putative membrane protein, InPSR26, regulates progression of PCD during petal senescence in Japanese morning glory.

View Article and Find Full Text PDF

Involvement of the ethylene response pathway in dormancy induction in chrysanthemum.

J Exp Bot

December 2008

National Institute of Floricultural Science (NIFS), National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan.

Temperature plays a significant role in the annual cycling between growth and dormancy of the herbaceous perennial chrysanthemum (Chrysanthemum morifolium Ramat.). After exposure to high summer temperatures, cool temperature triggers dormancy.

View Article and Find Full Text PDF

We conducted videophone conversations with elderly adults living in a nursing home to discover whether their verbal ability was improved by repeated remote conversations. The control group comprised five elderly adults. The experimental group comprised six elderly adults, including three patients with dementia.

View Article and Find Full Text PDF

Depending on the species, the end of flower life span is characterized by petal wilting or by abscission of petals that are still fully turgid. Wilting at the end of petal life is due to programmed cell death (PCD). It is not known whether the abscission of turgid petals is preceded by PCD.

View Article and Find Full Text PDF

We isolated several senescence-associated genes (SAGs) from the petals of morning glory (Ipomoea nil) flowers, with the aim of furthering our understanding of programmed cell death. Samples were taken from the closed bud stage to advanced visible senescence. Actinomycin D, an inhibitor of transcription, if given prior to 4 h after opening, suppressed the onset of visible senescence, which occurred at about 9 h after flower opening.

View Article and Find Full Text PDF

The white petals of chrysanthemum (Chrysanthemum morifolium Ramat.) are believed to contain a factor that inhibits the accumulation of carotenoids. To find this factor, we performed polymerase chain reaction-Select subtraction screening and obtained a clone expressed differentially in white and yellow petals.

View Article and Find Full Text PDF

Programmed cell death (PCD) was studied in the petals of Antirrhinum majus, Argyranthemum frutescens, and Petunia hybrida, using DNA degradation and changes in nuclear morphology as parameters. The petals exhibit loss of turgor (wilting) as a visible symptom of PCD. DNA degradation, as shown on agarose gels, occurred in all species studied, prior to visible wilting.

View Article and Find Full Text PDF

Expression of ethylene receptors Dl-ERS1-3 and Dl-ERS2, and ethylene response during flower senescence in Delphinium.

J Plant Physiol

November 2006

National Institute of Floricultural Science, National Agriculture and Bio-oriented Research Organization, Fujimoto 2-1, Tsukuba 305-8519, Ibaraki, Japan.

To clarify the relationships of flower senescence, especially sepal abscission, and ethylene receptor gene expression in different flower parts, we isolated two cDNAs encoding ethylene receptors Dl-ERS1-3 and Dl-ERS2 from Delphinium flowers. Deduced polypeptides possessed no response regulator domain, indicating that they belong to a family of ethylene response sensor (ERS) ethylene receptors. Dl-ERS1-3 and Dl-ERS2 exhibited constitutive levels during flower senescence.

View Article and Find Full Text PDF