10 results match your criteria: "National Institute of Drug Abuse-Intramural Research Program[Affiliation]"

Monoamine transporters function in neuronal membranes to control extracellular concentrations of their substrates. Cell-surface expression of transporters is regulated by substrates and intracellular signaling, but the underlying mechanisms remain unclear. Here, we found that substrates of the dopamine transporter (DAT), amphetamine and dopamine, synergize with protein kinase C (PKC)-dependent DAT ubiquitination to markedly elevate clathrin-mediated endocytosis of DAT, which is accompanied by DAT movement out of plasma membrane protrusions with a negative curvature.

View Article and Find Full Text PDF

Modeling transcranial magnetic stimulation coil with magnetic cores.

J Neural Eng

January 2023

Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, United States of America.

Accurate modeling of transcranial magnetic stimulation (TMS) coils with the magnetic core is largely an open problem since commercial (quasi) magnetostatic solvers do not output specific field characteristics (e.g. induced electric field) and have difficulties when incorporating realistic head models.

View Article and Find Full Text PDF

Humans are increasingly aware that their fate will depend on the wisdom they apply in interacting with the ecosystem. Its health is defined as the condition in which the ecosystem can deliver and continuously renew its fundamental services. A healthy ecosystem allows optimal interactions between humans and the other biotic/abiotic components, and only in a healthy ecosystem can humans survive and efficiently reproduce.

View Article and Find Full Text PDF

Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens.

Neuron

May 2018

Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. Electronic address:

Article Synopsis
  • Dopamine input to the dorsal striatum and nucleus accumbens comes from different midbrain neurons, affecting their function.
  • Research showed that D2 receptors in the nucleus accumbens have slower synaptic currents compared to those in the dorsal striatum.
  • Cocaine exposure eliminated the heightened sensitivity of D2 receptors in the nucleus accumbens, highlighting how these differences in sensitivity and timing affect dopamine signal encoding in brain circuits.
View Article and Find Full Text PDF

Investigations of brain complex integrative actions should consider beside neural networks, glial, extracellular molecular, and fluid channels networks. The present paper proposes that all these networks are assembled into the brain hyper-network that has as fundamental components, the tetra-partite synapses, formed by neural, glial, and extracellular molecular networks. Furthermore, peri-synaptic astrocytic processes by modulating the perviousness of extracellular fluid channels control the signals impinging on the tetra-partite synapses.

View Article and Find Full Text PDF

Dopamine transporter (DAT) has been shown to accumulate in filopodia in neurons and non-neuronal cells. To examine the mechanisms of DAT filopodial targeting, we used quantitative live-cell fluorescence microscopy, and compared the effects of the DAT inhibitor cocaine and its fluorescent analog JHC1-64 on the plasma membrane distribution of wild-type DAT and two non-functional DAT mutants, R60A and W63A, that do not accumulate in filopodia. W63A did not bind JHC1-64, whereas R60A did, although less efficiently compared to the wild-type DAT.

View Article and Find Full Text PDF

Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes.

View Article and Find Full Text PDF

In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS.

J Am Soc Mass Spectrom

December 2005

National Institute of Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.

Phosphatidylcholine (PC) is one of the most abundant classes of phospholipids and is a major component of membranes in biological systems. Recently, PCs have been detected by direct tissue analysis using MALDI-TOFMS. However, these studies did not allow for the structural characterization of PCs in tissue.

View Article and Find Full Text PDF

Previously, it was reported that both norepinephrine transporter (NET) and dopamine transporter (DAT) knockout (KO) mice were sensitive to the reinforcing effects of cocaine. However, assessing the locomotor-stimulant effects of cocaine in these subjects has proven difficult due to significant differences in their baseline activity compared to wild-type controls. The present studies were designed to clarify the role of NET and DAT in the stimulant effects of acute and repeated cocaine utilizing these knockout mice, and thereby assess the role of these substrates in the locomotor stimulant effects of cocaine.

View Article and Find Full Text PDF

The stimulant properties of cocaine have been extensively investigated in the mouse using either intraperitoneal (i.p.) or subcutaneous (s.

View Article and Find Full Text PDF