4 results match your criteria: "National Institute of Advanced Industrial Science and Technology (AIST) Yoshida-Honmachi[Affiliation]"

We synthesized luminescent coordination polymer glasses composed of d metal cyanides and triphenylphosphine through melt-quenching and mechanical milling protocols. Synchrotron X-ray total scattering measurements and solid-state NMR revealed their one-dimensional chain structures and high structural dynamics. Thermodynamic and photoluminescence properties were tunable by the combination of heterometallic ions (Ag, Au, and Cu) in the structures.

View Article and Find Full Text PDF

Proton-conductive coordination polymer glass for solid-state anhydrous proton batteries.

Chem Sci

March 2021

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan

Designing solid-state electrolytes for proton batteries at moderate temperatures is challenging as most solid-state proton conductors suffer from poor moldability and thermal stability. Crystal-glass transformation of coordination polymers (CPs) and metal-organic frameworks (MOFs) melt-quenching offers diverse accessibility to unique properties as well as processing abilities. Here, we synthesized a glassy-state CP, [Zn(HPO)(HO)](1,2,3-benzotriazole), that exhibited a low melting temperature (114 °C) and a high anhydrous single-ion proton conductivity (8.

View Article and Find Full Text PDF

High proton conducting electrolytes with mechanical moldability are a key material for energy devices. We propose an approach for creating a coordination polymer (CP) glass from a protic ionic liquid for a solid-state anhydrous proton conductor. A protic ionic liquid (dema)(HPO), with components which also act as bridging ligands, was applied to construct a CP glass (dema)[Zn(HPO)(HPO)].

View Article and Find Full Text PDF

We studied the relationship between proton conductivity and the terahertz-regime vibrations of two-dimensional MOFs. The results of spectroscopy studies clarified the essential role played by the collective motions in the terahertz region in 2D layers for efficient H conduction. calculations suggested the collective motion to be predominantly determined by the valence electronic structure, depending on the identity of the metal ion.

View Article and Find Full Text PDF