8,668 results match your criteria: "National Institute of Advanced Industrial Science and Technology(AIST).[Affiliation]"

Two-layer homolog network approach for PFAS nontarget screening and retrospective data mining.

Nat Commun

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.

The rapid increase of novel per- and polyfluoroalkyl substances (PFAS) raises concerns, while their identification remains challenging. Here, we develop a two-layer homolog network approach for PFAS nontarget screening using mass spectrometry. The first layer constructs networks between homologs, with evaluation showing that it filters 94% of false candidates.

View Article and Find Full Text PDF

Gibbons, a type of lesser ape, are brachiators but also walk bipedally and without forelimb assistance, not only on the ground but also on tree branches. The arboreal bipedal walking strategy of the gibbons has been studied in previous studies in relation to two-dimensional (2D) kinematic analysis. However, because tree branches and the ground differ greatly in width, leading to a constrained foot contact point on the tree branches, gibbons must adjust their 3D joint motions of trunk and hindlimb on the tree branches.

View Article and Find Full Text PDF

Sodium borohydride dihydrate (NaBH·2HO) forms through dihydrogen bonding between the hydridic hydrogen of the BH ion and the protonic hydrogen of the water molecule. High-pressure structural changes in NaBH·2HO, observed up to 11 GPa through X-ray diffraction and Raman scattering spectroscopy, were analyzed to assess the influence of dihydrogen bonds on its crystal structure. At approximately 4.

View Article and Find Full Text PDF

Grids designed for tomography: Stereovision transmission electron microscopy makes it easy to determine the winding handedness of helical nanocoils.

Micron

January 2025

Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Electronic address:

Determining the handedness of helical nanocoils using transmission electron microscopy (TEM) has traditionally been challenging due to the deep depth of field and transmission nature of TEM, complementary techniques are considered necessary and have been practiced such as low angle rotary shadowing, scanning electron microscopy (SEM), or atomic force microscopy (AFM). These methods require customized sample preparation, making direct comparison difficult. Inspired by the need to identify the helical winding direction from TEM images alone, we developed a specialized tomography grid to capture stereo-pair images, enabling stereopsis.

View Article and Find Full Text PDF

This study presents a novel approach that combines thermogravimetric analysis with time-of-flight mass spectrometry (TG-TOFMS), principal component analysis (PCA), and Kendrick mass defect (KMD) analysis─referred to as TG-PCA-KMD─to investigate molecular-scale structural changes and quantitatively assess the progression of thermo-oxidative degradation in glass fiber reinforced polypropylene (GF/PP). TG-TOFMS enables the simultaneous and sensitive detection of both structural changes due to thermo-oxidative degradation and compositional changes in the filler and matrix. PCA and KMD analysis are crucial for identifying specific ion series derived from the degraded PP matrix in the high-resolution mass spectra obtained through TG-TOFMS.

View Article and Find Full Text PDF

Zero-echo time imaging achieves whole brain activity mapping without ventral signal loss in mice.

Neuroimage

January 2025

Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Japan. Electronic address:

Functional MRI (fMRI) is an important tool for investigating functional networks. However, the widely used fMRI with T2*-weighted imaging in rodents has the problem of signal lack in the lateral ventral area of forebrain including the amygdala, which is essential for not only emotion but also noxious pain. Here, we scouted the zero-echo time (ZTE) sequence, which is robust to magnetic susceptibility and motion-derived artifacts, to image activation in the whole brain including the amygdala following the noxious stimulation to the hind paw.

View Article and Find Full Text PDF

Preparation of Small Extracellular Vesicles Using Sequential Ultrafiltration with Regenerated Cellulose Membranes of Different Molecular Weight Cutoffs: A Study of Morphology and Size by Electron Microscopy.

Microsc Microanal

January 2025

Cellular and Molecular Biotechnology Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.

There is still room for improvement in the isolation and purification techniques for extracellular vesicles (EVs), particularly in the separation of exosomes (small EVs) from other membrane vesicles such as microvesicles and apoptotic bodies. Furthermore, it is crucial to establish preparation methods that preserve the intrinsic properties of EVs in this context. In this study, we focus on the isolation and preparation of small EVs, exosomes, from the culture supernatant of a human cell line.

View Article and Find Full Text PDF

Electrochemical devices that can operate at temperatures of 200-300 °C are expected to become the next-generation energy conversion devices in fuel cells and electrosynthesis, which are important for achieving carbon neutrality. Proton conductors based on phosphate glasses are being developed as candidate materials for such devices. We recently developed a glass proton conductor by using silicophosphoric acid based on the idea of solidifying phosphoric acid with silicon as a cross-linking glass framework.

View Article and Find Full Text PDF

Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method.

Int J Mol Sci

December 2024

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.

View Article and Find Full Text PDF

Chemical-nose/tongue technologies are emerging as promising analytical tools for glycan analysis. After briefly introducing the importance of glycans and their analytical methods, including the lectin microarray (LMA) as one of the gold standards, the fundamental principles underlying chemical noses/tongues are explained and various applications for monosaccharides and glycans are introduced. Then, the similarities and differences of these two approaches are discussed.

View Article and Find Full Text PDF

Recently, ionic thermoelectric supercapacitors have gained attention because of their high open circuit voltages, even for ions that are redox inactive. As a source of open circuit voltage (electromotive force), an asymmetry in electric double layers developed by the adsorption of ions at the electrode surfaces kept at different temperatures has previously been proposed. As another source, the Eastman entropy of transfer, which is related to the Soret coefficient, has been considered.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity.

View Article and Find Full Text PDF

We introduce our proprietary Materials Informatics (MI) technologies and our chemistry-oriented methodology for exploring new inorganic functional materials. Using machine learning on crystal structure databases, we developed 'Element Reactivity Maps' that displays the presence or the predicted formation probability of compounds for combinations of 80 × 80 × 80 elements. By analysing atomic coordinates with Delaunay tetrahedral decomposition, we established the concept of Delaunay Chemistry.

View Article and Find Full Text PDF

Alkaline-earth metal oxides with the rocksalt structure, which are simple ionic solids, have attracted attention in attempts to gain fundamental insights into the properties of metal oxides. The surfaces of alkaline-earth metal oxides are considered promising catalysts for the oxidative coupling of methane (OCM); however, the development of such catalysts remains a central research topic. In this paper, we performed first-principles calculations to investigate the ability of four alkaline-earth metal oxides (MgO, CaO, SrO, and BaO) to catalyze the OCM.

View Article and Find Full Text PDF

We describe a complete genome sequence of strain M72/1 (= JCM 17581 = DSM 16840 = NCIMB 14031). The genome assembly consists of a single circular chromosome with a length of 3,385,415 base pairs and was predicted to contain 3,338 genes and encode for 3,180 proteins.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) exhibit unique properties and potential applications when reduced to one-dimensional (1D) nanoribbons (NRs), owing to quantum confinement and high edge densities. However, effective growth methods for self-aligned TMD NRs are still lacking. We demonstrate a versatile approach for lattice-guided growth of dense, aligned MoS NR arrays via chemical vapor deposition (CVD) on anisotropic sapphire substrates, without tailored surface steps.

View Article and Find Full Text PDF

Achieving atomic-level characterization of the diamond (001) surface has been a persistent goal over recent decades. This pursuit aims to understand the smooth growth of diamonds and investigate surface defects and adsorbates relevant to applications. However, the inherently low conductivity and the short C-C bonds present significant challenges for atomic resolution imaging.

View Article and Find Full Text PDF

Untargeted Mutation Triggered by Ribonucleoside Embedded in DNA.

Int J Mol Sci

December 2024

Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.

DNA polymerases frequently misincorporate ribonucleoside 5'-triphosphates into nascent DNA strands. This study examined the effects of an incorporated ribonucleoside on untargeted mutations in human cells. Riboguanosine (rG) was introduced into the downstream region of the gene to preferentially detect the untargeted mutations.

View Article and Find Full Text PDF

Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits.

View Article and Find Full Text PDF

Seamounts are biodiversity hotspots that face increasing threats from anthropogenic activities. Seamounts host diverse sessile suspension-feeding organisms such as sponges and anthozoans, which are crucial for seamount ecosystems as they construct three-dimensional habitats utilized by numerous other animals. Therefore, accurate identification of seamount fauna, in particular of sessile suspension-feeding organisms, is of paramount importance for robust conservation efforts.

View Article and Find Full Text PDF

Myxobacteria, belonging to the phylum Myxococcota, are ubiquitous in soil, marine, and other environments. A recent metagenomic sequencing ana-lysis showed that Myxococcota are predominant in activated sludge systems; however, their metabolic traits remain unclear. In the present study, we exami-ned the potential biological functions of 46 metagenomic bins of Myxococcota reconstructed from activated sludge samples from four municipal sewage treatment plants.

View Article and Find Full Text PDF

Purpose: This study investigated the effects of femtosecond laser (FL) irradiation on the surface roughness and shear bond strength of high-translucency zirconia (6 mol% yttria-partially stabilized zirconia [6Y-PSZ]) and lithium disilicate (LiSiO) glass ceramics.

Methods: Fully sintered square-shaped specimens of 6Y-PSZ (7 groups; 20 specimens/group) and LiSiO (8 groups; 20 specimens/group) were surface-treated via sandblasting (50-μm alumina sand or glass beads) or FL irradiation (20- or 40-μm dot or cross-line patterns) or using Monobond Etch & Prime (Ivoclar Vivadent AG; only for LiSiO specimens). The surface roughness (arithmetic average [Sa] and developed interfacial area ratio [Sdr]) and shear bond strength after 24 h and 10,000 thermal cycles were measured and statistically analyzed.

View Article and Find Full Text PDF

We examined the potential of environmental DNA (eDNA) for identifying tsunami deposits in the geological record using lake-bottom sediments in the Tohoku region, Japan. The presence of eDNA from marine organisms in a lacustrine event deposit provides very strong evidence that the deposit was formed by an influx of water from the ocean. The diverse DNA assemblage in the deposit formed by the 2011 Tohoku-oki tsunami included DNA of marine origin indicating that eDNA has potential as an identifying proxy for tsunami deposits.

View Article and Find Full Text PDF

Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.

View Article and Find Full Text PDF

This study aimed to clarify the effects of high-concentration fluoride varnish application on the inhibition of the progression of initial enamel caries. Remineralization capacity and acid resistance following high-concentration fluoride varnish application were compared with untreated models and models treated with fluoride mouthwash. Bovine enamel was used to create a model of initial enamel caries.

View Article and Find Full Text PDF