25,431 results match your criteria: "National Institute of Advanced Industrial Science & Technology AIST Hokkaido[Affiliation]"

Ether bond-modified lipid nanoparticles for enhancing the treatment effect of hepatic fibrosis.

Int J Pharm

January 2025

National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China. Electronic address:

Lipid nanoparticle (LNP)-mediated RNA delivery holds significant potential for the treatment of various liver diseases. Ionizable lipids play a crucial role in the formulation of LNPs and directly influence their delivery efficiency. In this study, we introduced an innovative concept by incorporating an ether bond into the hydrophobic tail of ionizable lipids for the first time.

View Article and Find Full Text PDF

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions.

View Article and Find Full Text PDF

Catalyst design plays a critical role in ensuring sustainable and effective energy conversion. Electrocatalytic materials need to be able to control active sites and introduce defects in both acidic and alkaline electrolytes. Furthermore, producing efficient catalysts with a distinct surface structure advances our comprehension of the mechanism.

View Article and Find Full Text PDF

MXenes, a rapidly emerging class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted significant attention for their outstanding properties, including high electrical conductivity, tunable work function, and solution processability. These characteristics have made MXenes highly versatile and widely adopted in the next generation of optoelectronic devices, such as perovskite and organic solar cells. However, their integration into silicon-based optoelectronic devices remains relatively underexplored, despite silicon's dominance in the semiconductor industry.

View Article and Find Full Text PDF

The development of deep convolutional generative adversarial network to synthesize odontocetes' clicks.

J Acoust Soc Am

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.

Odontocetes are capable of dynamically changing their echolocation clicks to efficiently detect targets, and learning their clicking strategy can facilitate the design of man-made detecting signals. In this study, we developed deep convolutional generative adversarial networks guided by an acoustic feature vector (AF-DCGANs) to synthesize narrowband clicks of the finless porpoise (Neophocaena phocaenoides sunameri) and broadband clicks of the bottlenose dolphins (Tursiops truncatus). The average short-time objective intelligibility (STOI), spectral correlation coefficient (Spe-CORR), waveform correlation coefficient (Wave-CORR), and dynamic time warping distance (DTW-Distance) of the synthetic clicks were 0.

View Article and Find Full Text PDF

Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.

View Article and Find Full Text PDF

The comprehensive regulatory network in seed oil biosynthesis.

J Integr Plant Biol

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Plant oils play a crucial role in human nutrition, industrial applications and biofuel production. While the enzymes involved in fatty acid (FA) biosynthesis are well-studied, the regulatory networks governing these processes remain largely unexplored. This review explores the intricate regulatory networks modulating seed oil biosynthesis, focusing on key pathways and factors.

View Article and Find Full Text PDF

Control of water for high-yield and low-cost sustainable electrochemical synthesis of uniform monolayer graphene oxide.

Nat Commun

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.

With the rapid development of graphene industry, low-cost sustainable synthesis of monolayer graphene oxide (GO) has become more and more important for many applications such as water desalination, thermal management, energy storage and functional composites. Compared to the conventional chemical oxidation methods, water electrolytic oxidation of graphite-intercalation-compound (GIC) shows significant advantages in environmental-friendliness, safety and efficiency, but suffers from non-uniform oxidation, typically ~50 wt.% yield with ~50% monolayers.

View Article and Find Full Text PDF

The deep oceans are environments of complex carbon dynamics that have the potential to significantly impact the global carbon cycle. However, the role of hadal zones, particularly hadal trenches (water depth > 6 km), in the oceanic dissolved organic carbon (DOC) cycle is not thoroughly investigated. Here we report distinct DOC signatures in the Japan Trench bottom water.

View Article and Find Full Text PDF

Structure and function of a β-1,2-galactosidase from Bacteroides xylanisolvens, an intestinal bacterium.

Commun Biol

January 2025

Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

Galactosides are major carbohydrates that are found in plant cell walls and various prebiotic oligosaccharides. Studying the detailed biochemical functions of β-galactosidases in degrading these carbohydrates is important. In particular, identifying β-galactosidases with new substrate specificities could help in the production of potentially beneficial oligosaccharides.

View Article and Find Full Text PDF

Background: Risk preference changes nonlinearly across development. Although extensive developmental research on the neurotypical (NTP) population has shown that risk preference is highest during adolescence, developmental changes in risk preference in autistic (AUT) people, who tend to prefer predictable behaviors, have not been investigated. Here, we aimed to investigate these changes and underlying computational mechanisms.

View Article and Find Full Text PDF

High cardiorespiratory fitness (CRF) is associated with reduced cortical thinning and gray matter (GM) shrinkage in older adults. We investigated associations of CRF measured with peak oxygen consumption (V̇ O) with cortical thickness and GM volume across the adult lifespan. We hypothesized that higher CRF is associated with less cortical thinning and GM shrinkage across the adult lifespan, which is associated with better cognitive performance.

View Article and Find Full Text PDF

Natural killer cell therapy: the key to tackle the bottleneck of cell therapies against solid tumor?

Sci Bull (Beijing)

January 2025

Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. Electronic address:

View Article and Find Full Text PDF

Integrating machine learning, suspect and nontarget screening reveal the interpretable fates of micropollutants and their transformation products in sludge.

J Hazard Mater

January 2025

School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Activated sludge enriches vast amounts of micropollutants (MPs) when wastewater is treated, posing potential environmental risks. While standard methods typically focus on target analysis of known compounds, the identity, structure, and concentration of transformation products (TPs) of MPs remain less understood. Here, we employed a novel approach that integrates machine learning for the quantification of nontarget TPs with advanced target, suspect, and nontarget screening strategies.

View Article and Find Full Text PDF

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Chem Rec

January 2025

Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.

Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.

View Article and Find Full Text PDF

A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.

View Article and Find Full Text PDF

Dynamic Reconstruction of Fluid Interface Manipulated by Fluid Balancing Agent for Scalable Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.

Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.

View Article and Find Full Text PDF

Two-layer homolog network approach for PFAS nontarget screening and retrospective data mining.

Nat Commun

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.

The rapid increase of novel per- and polyfluoroalkyl substances (PFAS) raises concerns, while their identification remains challenging. Here, we develop a two-layer homolog network approach for PFAS nontarget screening using mass spectrometry. The first layer constructs networks between homologs, with evaluation showing that it filters 94% of false candidates.

View Article and Find Full Text PDF

A Chromosomal-level genome assembly and annotation of fat greenling (Hexagrammos otakii).

Sci Data

January 2025

Shandong Key Laboratory of Disease Control in Mariculture, Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao, 266104, China.

Fat greenling (Hexagrammos otakii Jordan & Starks, 1895) is a valuable marine fish species, crucial for aquaculture in Northern China due to its high-quality meat and significant economic value. However, the aquaculture industry faces challenges such as trait degradation, early sexual maturity, and disease susceptibility, necessitating advanced genomic interventions for sustainable cultivation. This study presents the first chromosomal-level genome assembly of H.

View Article and Find Full Text PDF

Injectable supramolecular hydrogel co-loading abemaciclib/NLG919 for neoadjuvant immunotherapy of triple-negative breast cancer.

Nat Commun

January 2025

State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.

The efficacy of cancer immunotherapy relies on a sufficient amount of functional immune cells. Triple-negative breast cancer lacks enough immune cell infiltration, and adjuvant therapy is necessary to prime anti-tumor immunity. However, the improvement in efficacy is unsatisfactory with concern about inducing systemic immunotoxicity.

View Article and Find Full Text PDF

Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications.

View Article and Find Full Text PDF

MXene is widely used in the electromagnetic interference (EMI) shielding field. However, the high electromagnetic reflectivity of pure MXene causes potential secondary EMI pollution. This study presents a hollow egg-box structure used in MXene composite film, by which the reflectivity (R) could decrease from 0.

View Article and Find Full Text PDF

The Icarian flight of antibody-drug conjugates: target selection amidst complexity and tackling adverse impacts.

Protein Cell

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China.

Antibody-drug conjugates (ADCs) represent a promising class of targeted cancer therapeutics that combine the specificity of monoclonal antibodies with the potency of cytotoxic payloads. Despite their therapeutic potential, the use of ADCs faces significant challenges, including off/on-target toxicity and resistance development. This review examines the current landscape of ADC development, focusing on the critical aspects of target selection and antibody engineering.

View Article and Find Full Text PDF