411 results match your criteria: "National Institute for Fusion Science[Affiliation]"

A high-speed tangentially viewing vacuum ultraviolet (VUV) telescope system, using an inverse Schwarzschild-type optic system was developed to study fluctuations in the Large Helical Device (LHD). However, for the original system, the sampling rate was restricted to below 2000 Hz due to the low signal to noise (S/N) ratio in the experiment. In order to improve the S/N ratio, upgrade of the system was made.

View Article and Find Full Text PDF

High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy.

View Article and Find Full Text PDF

Design of a dispersion interferometer combined with a polarimeter to increase the electron density measurement reliability on ITER.

Rev Sci Instrum

November 2016

ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul-lez-Durance, France.

A dispersion interferometer is a reliable density measurement system and is being designed as a complementary density diagnostic on ITER. The dispersion interferometer is inherently insensitive to mechanical vibrations, and a combined polarimeter with the same line of sight can correct fringe jump errors. A proof of the principle of the CO laser dispersion interferometer combined with the PEM polarimeter was recently conducted, where the phase shift and the polarization angle were successfully measured simultaneously.

View Article and Find Full Text PDF

Calibrations of the LHD Thomson scattering system.

Rev Sci Instrum

November 2016

KSTAR Research Center, National Fusion Research Institute, Daejeon 305-806, South Korea.

The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998.

View Article and Find Full Text PDF

Two-dimensional spatial profiles of potential fluctuation were measured with the heavy ion beam probe (HIBP) in the Large Helical Device (LHD). For 2D spatial profile measurements, the probe beam energy has to be changed, which requires the adjustment of many deflectors in the beam transport line to optimize the beam trajectory, since the transport line of LHD-HIBP system is long. The automatic beam adjustment system was developed, which allows us to adjust the beam trajectory easily.

View Article and Find Full Text PDF

Preliminary design of a tangentially viewing imaging bolometer for NSTX-U.

Rev Sci Instrum

November 2016

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA.

The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels.

View Article and Find Full Text PDF

Triton burnup measurements in KSTAR using a neutron activation system.

Rev Sci Instrum

November 2016

Department of Nuclear Engineering, Seoul National University, Seoul 151-744, South Korea.

Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.

View Article and Find Full Text PDF

A new tracer-encapsulated solid pellet (TESPEL) injection system has been developed additionally for the LHD heliotron. This system has three-dimensionally bended guide tubes, which allows us to inject the TESPEL obliquely on a poloidal cross-section of the LHD plasma. Consequently, this system enables us to control a tracer-impurity-deposited location more precisely.

View Article and Find Full Text PDF

The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.

View Article and Find Full Text PDF

In tomographic imaging of magnetically confined toroidal plasmas, a countermeasure against missing observation has been studied in terms of the adoption of prior information based on modelled plasma profiles. The Tikhonov regularization for image reconstruction is extended by the use of the Euclidean distance. A procedure of model fitting is designed in order to adaptively generate the reference image.

View Article and Find Full Text PDF

This paper describes the development study of the beam emission spectroscopy (BES) for the turbulent transport study in Heliotron J. Modification of the sightlines (10 × 4 for edge and 10 × 2 for edge) enables us to obtain 2-dimensional BES imaging. The cooling effect on the reduction in the electrical noise of avalanche photodiode (APD) assembly has been investigated using a refrigerant cooling system.

View Article and Find Full Text PDF

Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena.

View Article and Find Full Text PDF

The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed.

View Article and Find Full Text PDF

A tangential viewing phase contrast imaging system is being designed for the JT-60SA tokamak to investigate microturbulence. In order to obtain localized information on the turbulence, a spatial-filtering technique is applied, based on magnetic shearing. The tangential viewing geometry enhances the radial localization.

View Article and Find Full Text PDF

Analysis method for Thomson scattering diagnostics in GAMMA 10/PDX.

Rev Sci Instrum

November 2016

Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

We have developed an analysis method to improve the accuracies of electron temperature measurement by employing a fitting technique for the raw Thomson scattering (TS) signals. Least square fitting of the raw TS signals enabled reduction of the error in the electron temperature measurement. We applied the analysis method to a multi-pass (MP) TS system.

View Article and Find Full Text PDF

Tracer-Encapsulated Solid Pellet (TESPEL) injection system for the TJ-II stellarator.

Rev Sci Instrum

November 2016

Laboratorio Nacional de Fusión, CIEMAT, Av. Complutense 40, Madrid 28040, Spain.

A tracer-encapsulated solid pellet (TESPEL) injection system for the TJ-II stellarator was recently developed. In order to reduce the time and cost for the development, we combined a TESPEL injector provided by National Institute for Fusion Science with an existing TJ-II cryogenic pellet injection system. Consequently, the TESPEL injection into the TJ-II plasma was successfully achieved, which was confirmed by several pellet diagnostics including a normal-incidence spectrometer for monitoring a tracer impurity behavior.

View Article and Find Full Text PDF

Scintillator-based fast ion loss measurements in the EAST.

Rev Sci Instrum

November 2016

Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei, Anhui, China.

A new scintillator-based fast ion loss detector (FILD) has been installed on Experimental Advanced Superconducting Tokamak (EAST) to investigate the fast ion loss behavior in high performance plasma with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). A two dimensional 40 mm × 40 mm scintillator-coated (ZnS:Ag) stainless plate is mounted in the front of the detector, capturing the escaping fast ions. Photons from the scintillator plate are imaged with a Phantom V2010 CCD camera.

View Article and Find Full Text PDF

An injection barrel was designed and fabricated for a small size 0.8 mm cryogenic pellet with a low speed of 200-300 m/s in medium-sized plasma fusion devices. Pellet injection with pneumatic acceleration was examined using a conventional in situ technique.

View Article and Find Full Text PDF

An abrupt onset of the new tongue-shaped deformation of magnetic surface in magnetized plasmas, which was conjectured in since the 1960s but has not been observed, is experimentally identified just before an abrupt onset of a large-scale collapse event. Two novel properties of the event are identified. First, the transition of symmetry of perturbation (rather than a growth of linearly unstable MHD modes) was found to be a key for the onset of abrupt collapse, i.

View Article and Find Full Text PDF

This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (T) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured T and intensity of the signals. How accurate the values are depends on the electron temperature (T) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2).

View Article and Find Full Text PDF

The synchronization of geodesic acoustic modes (GAMs) and magnetic fluctuations is identified in the edge plasmas of the HL-2A tokamak. Mesoscale electric fluctuations (MSEFs) having components of a dominant GAM, and m/n=6/2 potential fluctuations are found at the same frequency as that of the magnetic fluctuations of m/n=6/2 (m and n are poloidal and toroidal mode numbers, respectively). The temporal evolutions of the MSEFs and the magnetic fluctuations clearly show the frequency entrainment and the phase lock between the GAM and the m/n=6/2 magnetic fluctuations.

View Article and Find Full Text PDF

Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma.

Sci Rep

September 2016

Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga-city, Fukuoka 816-8580, Japan.

Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence.

View Article and Find Full Text PDF

To realize a novel vacuum-atmosphere interface that does not require a large differential pumping system, a robust cascade arc discharge source called a plasma window is constructed and tested for long-term operation. By modifying a test plasma with a direct current discharge, a vacuum interface with a high gas pressure ratio of 1/407 between the discharge and expansion sections is demonstrated for currents as high as 20 A. No significant damage to the electrodes is observed during the operation.

View Article and Find Full Text PDF

Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt "radial" electric field generation in toroidal plasmas.

View Article and Find Full Text PDF

The turbulent structure formation, where strongly-inhomogeneous turbulence and global electromagnetic fields are self-organized, is a fundamental mechanism that governs the evolution of high-temperature plasmas in the universe and laboratory (e.g., the generation of edge transport barrier (ETB) of the H-mode in the toroidal plasmas).

View Article and Find Full Text PDF