24 results match your criteria: "National Institute for Basic Biology Okazaki[Affiliation]"

Understanding the genetic basis for adapting to thermal environments is important due to serious effects of global warming on ectothermic species. Various genes associated with thermal adaptation in lizards have been identified mainly focusing on changes in gene expression or the detection of positively selected genes using coding regions. Only a few comprehensive genome-wide analyses have included noncoding regions.

View Article and Find Full Text PDF

Knowledge of the factors that determine the distribution ranges of organisms is necessary to understand their evolutionary and ecological significance and contribution to biodiversity. A very effective mean of studying such factors is to compare the distribution characteristics and genetic structures of closely related species with differing habitat preferences. Freshwater aquatic insects are relatively easy to observe and the basis of their corresponding niche differentiation easier to identify.

View Article and Find Full Text PDF

Endoreduplication or nuclear genome replication without cell division is widely observed in the metabolically active tissues of plants and animals. The fat body cells of adult female insects produce abundant yolk proteins and become polyploid, which is assumed to accelerate egg production. Recently, it was reported that in termites, endopolyploidy in the fat body occurs only in queens but not in the other females; however, the relationship between the fecundity and ploidy level in the fat body remains unclear.

View Article and Find Full Text PDF

Cell-producing events in developing tissues are mechanically dynamic throughout the cell cycle. In many epithelial systems, cells are apicobasally tall, with nuclei and somata that adopt different apicobasal positions because nuclei and somata move in a cell cycle-dependent manner. This movement is apical during G2 phase and basal during G1 phase, whereas mitosis occurs at the apical surface.

View Article and Find Full Text PDF

Polyamines are small basic compounds present in all living organisms and act in a variety of biological processes. However, the mechanism of polyamine sensing, signaling and response in relation to other metabolic pathways remains to be fully addressed in plant cells. As one approach, we isolated Arabidopsis mutants that show increased resistance to spermine in terms of chlorosis.

View Article and Find Full Text PDF

Expression pattern of immediate early genes in the cerebellum of D1R KO, D2R KO, and wild type mice under vestibular-controlled activity.

Front Cell Dev Biol

July 2015

Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan ; Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI) Okazaki, Japan ; Laboratory of Molecular Analysis for Higher Brain Function, RIKEN Brain Science Institute Wako, Japan.

We previously reported the different motor abilities of D1R knockout (KO), D2R KO and wild-type (WT) mice. To understand the interaction between the cerebellum and the striatal direct and indirect pathways, we examined the expression patterns of immediate early genes (IEG) in the cerebellum of these three genotypes of mice. In the WT naive mice, there was little IEG expression.

View Article and Find Full Text PDF

The role of dynamic instability in microtubule organization.

Front Plant Sci

October 2014

Division of Evolutionary Biology, National Institute for Basic Biology Okazaki, Japan ; Department of Basic Biology, School of Life Sciences, The Graduate University for Advanced Studies Okazaki, Japan.

Microtubules are one of the three major cytoskeletal components in eukaryotic cells. Heterodimers composed of GTP-bound α- and β-tubulin molecules polymerize to form microtubule protofilaments, which associate laterally to form a hollow microtubule. Tubulin has GTPase activity and the GTP molecules associated with β-tubulin molecules are hydrolyzed shortly after being incorporated into the polymerizing microtubules.

View Article and Find Full Text PDF

Here we present a novel tracing technique to stain projection neurons in Golgi-like detail by double viral infection. We used retrograde lentiviral vectors and adeno-associated viral vectors (AAV) to drive "TET-ON/TET-OFF system" in neurons connecting two regions. Using this method, we successfully labeled the corticothalamic (CT) cells of the mouse somatosensory barrel field (S1BF) and motor cortex (M1) in their entirety.

View Article and Find Full Text PDF

Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior.

Front Integr Neurosci

July 2014

Laboratory of Neurochemistry, National Institute for Basic Biology Okazaki, Japan ; Department of Laboratory Animal Science, Kitasato University School of Medicine Sagamihara, Japan ; Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University Niigata, Japan.

Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice.

View Article and Find Full Text PDF

Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates.

Front Neurosci

June 2014

Laboratory of Animal Physiology, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University Nagoya, Japan ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya, Japan ; Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University Nagoya, Japan ; Division of Seasonal Biology, Department of Environmental Biology, National Institute for Basic Biology Okazaki, Japan.

Most vertebrates living outside the tropical zone show robust physiological responses in response to seasonal changes in photoperiod, such as seasonal reproduction, molt, and migration. The highly sophisticated photoperiodic mechanism in Japanese quail has been used to uncover the mechanism of seasonal reproduction. Molecular analysis of quail mediobasal hypothalamus (MBH) revealed that local thyroid hormone activation within the MBH plays a critical role in the photoperiodic response of gonads.

View Article and Find Full Text PDF

The identity of the claustrum as a part of cerebral cortex, and in particular of the adjacent insular cortex, has been investigated by connectivity features and patterns of gene expression. In the present paper, we mapped the cortical and claustral expression of several cortical genes in rodent and macaque monkey brains (nurr1, latexin, cux2, and netrinG2) to further assess shared features between cortex and claustrum. In mice, these genes were densely expressed in the claustrum, but very sparsely in the cortex and not present in the striatum.

View Article and Find Full Text PDF

mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain.

Front Neural Circuits

September 2014

Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan ; Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI) Okazaki, Japan.

To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana.

View Article and Find Full Text PDF

Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others.

View Article and Find Full Text PDF

We investigated the time course of the expression of several activity-dependent genes evoked by visual inputs in the primary visual cortex (V1) in adult marmosets. In order to examine the rapid time course of activity-dependent gene expression, marmosets were first monocularly inactivated by tetrodotoxin (TTX), kept in darkness for two days, and then exposed to various length of light stimulation. Activity-dependent genes including HTR1B, HTR2A, whose activity-dependency were previously reported by us, and well-known immediate early genes (IEGs), c-FOS, ZIF268, and ARC, were examined by in situ hybridization.

View Article and Find Full Text PDF

In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas.

Front Neural Circuits

May 2014

Division of Brain Circuits, National Institute for Basic Biology Okazaki, Japan ; CREST, Japan Science and Technology Agency Saitama, Japan ; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo Tokyo, Japan.

Interactions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA) and the caudal forelimb area (CFA). The RFA is thought to be an equivalent of the premotor cortex (PM) in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex.

View Article and Find Full Text PDF

Genetic basis of cytokinin and auxin functions during root nodule development.

Front Plant Sci

March 2013

Division of Symbiotic Systems, National Institute for Basic Biology Okazaki Aichi, Japan ; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki Aichi, Japan.

The phytohormones cytokinin and auxin are essential for the control of diverse aspects of cell proliferation and differentiation processes in plants. Although both phytohormones have been suggested to play key roles in the regulation of root nodule development, only recently, significant progress has been made in the elucidation of the molecular genetic basis of cytokinin action in the model leguminous species, Lotus japonicus and Medicago truncatula. Identification and functional analyses of the putative cytokinin receptors LOTUS HISTIDINE KINASE 1 and M.

View Article and Find Full Text PDF

Peroxisomes, one of single membrane-bound organelles, are present ubiquitously in eukaryotic cells. They were originally identified as organelles for production of hydrogen peroxide, the degradation of its hydrogen peroxide, and metabolism of fatty acids, which are functions common to almost all the organisms. Meanwhile, photorespiration and assimilation of symbiotically induced nitrogen are plant-specific functions.

View Article and Find Full Text PDF

Size is an important parameter in the characterization of organ morphology and function. To understand the mechanisms that control leaf size, we previously isolated a number of Arabidopsis thaliana mutants with altered leaf size. Because leaf morphogenesis depends on determinate cell proliferation, the size of a mature leaf is controlled by variation in cell size and number.

View Article and Find Full Text PDF

In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves.

View Article and Find Full Text PDF

The development of the flat morphology of leaf blades is dependent on the control of cell proliferation as well as cell expansion. Each process has a polarity with respect to the longitudinal and transverse axes of the leaf blade. However, only a few regulatory components of these processes have been identified to date.

View Article and Find Full Text PDF

The deposit of DNA samples of wild plants that correspond to voucher specimens is highly informative and greatly enhances the value of the herbarium specimens. The Society of Himalayan Botany (SHB), Tokyo, has assembled general collections of flowering plants of the Sino-Himalayan region for more than 40 years. In a trial of the collection of these types of bioresources for use in basic research, we adopted FTA cards, which have recently been used for large-scale collection of DNA of humans, microorganisms and viruses, for the general collection of DNA samples of wild plants during a botanical expedition in Mustang, Nepal, in 2003.

View Article and Find Full Text PDF