77 results match your criteria: "National Institute for Advanced Industrial Science and Technology[Affiliation]"

The dinoflagellate luciferase of Lingulodinium polyedrum has three catalytic domains in its single polypeptide chain (M(r) = 137 kDa), and each 42 kDa domain is enzymatically active. Deletion mutants for N- or C-terminal regions of domain 3 of the luciferase, ranging from 29 to 38 kDa, were constructed and expressed in E. coli cells.

View Article and Find Full Text PDF

In the present study, we investigated the antisense properties of conjugate oligonucleotides (ODNs) inhibiting human telomerase activity. Conjugate oligonucleotides assembled with signal peptides, artificially designed peptides, amines and sugars were synthesized by solid phase fragment condensation (SPFC) in sufficient yields. Conjugate ODNs showed a high resistance to nuclease degradation and sufficient binding affinity to target RNA, comparatively rapid and sufficient intracellular delivery and specific localization controlled by signal peptides (nuclear localization signals, NLS; nuclear export signals, NES).

View Article and Find Full Text PDF

Mucosal surfaces, especially the gastrointestinal (GI) tract, are obligatory sites for tolerance induction against numerous exogenous antigens. Therefore, the mucosal surface seems to provide a microenvironment conductive to the induction of antigen-specific regulatory T cells. The cytokine milieu, which includes IL-10 and TGF-beta, affects effector function of local dendritic cells and induces regulatory T cells (iT(REG)).

View Article and Find Full Text PDF

The present study describes a stabilization of single quantum dot (QD) micelles by a "hydrophobic" silica precursor and an extension of a silica layer to form a silica shell around the micelle using "amphiphilic" and "hydrophilic" silica precursors. The obtained product consists of approximately 92% single nanocrystals (CdSe, CdSe/ZnS, or CdSe/ZnSe/ZnS QDs) into the silica micelles, coated with a silica shell. The thickness of the silica shell varies, starting from 3-4 nm.

View Article and Find Full Text PDF

We investigated the optical properties of isolated single aggregates of Ag nanoparticles (Ag nanoaggregates) on which rhodamine 6G molecules were adsorbed to reveal experimentally a correlation among plasmon resonance Rayleigh scattering, surface-enhanced resonance Raman scattering (SERRS), and its background light emission. From the lack of excitation-laser energy dependence of background emission maxima we concluded that the background emission is luminescence, not Raman scattering. The polarization dependence of both SERRS and background emission was the same as that of the lowest-energy plasmon resonance maxima, which is associated with a longitudinal plasmon.

View Article and Find Full Text PDF

Oligonucleotides can be covalently linked to peptides composed of any sequence of amino acids by solid phase fragment condensation. The peptides incorporated into the conjugates include nuclear localizing signals (NLS), nuclear export signals (NES), membrane fusion domain of some viral proteins and some designed peptides with amphipathic character. Evaluation of biological properties of DNA-peptide conjugates indicated that (a) the conjugates could bind to target RNA and dsDNA with increased affinity, (b) the conjugates were more resistant to cellular nuclease degradation, (c) the conjugate-RNA hybrids could activate RNase H as effectively as native oligonucleotides, (d) the conjugates with fusion peptides showed largely enhanced cellular uptake, (e) the conjugates with NLS could be predominantly delivered into the cell nucleus, (f) the conjugates with NES could be localized in the cytoplasm.

View Article and Find Full Text PDF

In the present study, we describe the design and fabrication of quantum dot-conjugated hybridization probes and their application to the development of a comparatively simple and rapid procedure for the selection of highly effective small-interfering RNA (siRNA) sequences for RNA interference (RNAi) in mammalian cells, for example, siRNAs with high accessibility and affinity to the respective mRNA target. A single-stranded siRNA was conjugated with a quantum dot and used as a hybridization probe. The target mRNA was amplified in the presence of Cy5-labeled nucleotides, and Cy5-mRNA served as a hybridization sample.

View Article and Find Full Text PDF

The present study accents on the privileges of microchip-based electrophoresis to the conventional gel electrophoresis in separation of telomerase repeat amplification protocol/polymerase chain reaction (PCR) ladder products obtained in telomerase-catalyzed reaction in cancer cells. We try to clarify the interpretation of the results obtained by both electrophoretic procedures and to avoid misinterpretation as a result of PCR-dependent artefacts.

View Article and Find Full Text PDF

The present study describes an enhancement of the photoluminescence of CdSe quantum dots under long-term ultraviolet irradiation in organic solvents. The photoenhancement effect followed multiexponential kinetics and was found to depend on several factors: intensity of ultraviolet light, polarity of the solvent, presence of capping agents on the nanocrystal surface, and presence of free Cd and Se ions in the solution. High intensity ultraviolet irradiation provoked a rapid enhancement of the photoluminescence of CdSe nanocrystals, reaching the maximum with subsequent photoluminescence decay.

View Article and Find Full Text PDF

Supercritical carbon dioxide (scCO(2)) is increasingly promoted as an environmentally benign alternative to conventional organic solvents. The supercritical state bridges the gap between liquid and gaseous states by offering gaslike diffusion rates and liquidlike solvent densities, thereby enabling potential opportunities as a reaction and separation medium in chemical industry. Understanding the solvent behavior of liquid and scCO(2) is of critical importance to enable the design of CO(2)-philic molecular systems and to expand the use of these solvent systems to a wider range of chemical processes.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity but the underlying signaling mechanisms remain unknown. Here, we show that BDNF rapidly recruits full-length TrkB (TrkB-FL) receptor into cholesterol-rich lipid rafts from nonraft regions of neuronal plasma membranes. Translocation of TrkB-FL was blocked by Trk inhibitors, suggesting a role of TrkB tyrosine kinase in the translocation.

View Article and Find Full Text PDF

The process of cytokinesis in animal cells is usually presented as a relatively simple picture: A cleavage plane is first positioned in the equatorial region by the astral microtubules of the anaphase mitotic apparatus, and a contractile ring made up of parallel filaments of actin and myosin II is formed and encircles the cortex at the division site. Active sliding between the two filament systems constricts the perimeter of the cortex, leading to separation of two daughter cells. However, recent studies in both animal cells and lower eukaryotic model organisms have demonstrated that cytokinesis is actually far more complex.

View Article and Find Full Text PDF

Background: Short, 21-mer, double-stranded/small interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia (CML) with a potential also to target c-abl mRNA.

Methods: ds/siRNAs were transfected into bcr-abl-positive K-562 cells (derived from blast-crisis) or bcr-abl-negative/c-abl-positive Jurkat cells (derived from acute lymphoblastic leukemia) using lipofectamine. ds/siRNAs intracellular uptake was detected by fluorescent confocal microscopy using fluorescein-labeled ds/siRNAs.

View Article and Find Full Text PDF

Atomic-scale defects in graphene layers alter the physical and chemical properties of carbon nanostructures. Theoretical predictions have recently shown that energetic particles such as electrons and ions can induce polymorphic atomic defects in graphene layers as a result of knock-on atom displacements. However, the number of experimental reports on these defects is limited.

View Article and Find Full Text PDF

Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs.

View Article and Find Full Text PDF

The present study describes an impressive enhancement of the photoluminescence (PL) intensity of low-temperature synthesized CdSe nanocrystals (75 degrees C) during long-term UV-irradiation. The integrated PL-intensity of CdSe core and CdSe/ZnS core/shell nanocrystals, dispersed in chloroform, enhanced about 3 and 6 times, respectively, during 9 h exposure to UV-light, without any significant changes in the characteristic absorbance spectra and shifting of PL-spectra. After termination of the irradiation a comparatively slow photobleaching was detected with tau(1/2) = 6 h for CdSe core and tau(1/2) = 14 h for CdSe/ZnS core/shell nanocrystals.

View Article and Find Full Text PDF

Purpose: To clarify the role of the pathways dependent on protein-kinase C (PK-C) and Ca2+/calmodulin (CaM) in the regulation of telomerase activity in Burkitt's lymphoma cells.

Methods: Burkitt's lymphoma cells (Raji and Daudi) were treated with the PK-C inhibitor, bisindolylmaleimide (BIM), or the CaM inhibitor, trifluoperazine (TFPZ), in a dose-dependent manner and in a time-dependent manner. The activities of PK-C isoenzymes were analyzed fluorimetrically using POLARIS assay kits.

View Article and Find Full Text PDF

Clinical studies in chronic myelogenous leukemia demonstrate that the overexpression of Bcr-Abl tyrosine kinase is usually accompanied by relatively low telomerase activity in the chronic phase, which reverts to a high activity in blast crisis. The present study was designed to investigate the cross-talk between both enzymes, using Bcr-Abl-positive K-562 and Bcr-Abl-negative Jurkat cell lines, treated with antisense oligodeoxyribonucleotides (ODNs) against Bcr-Abl/c-Abl mRNA. The decreased amount and enzyme activity of Bcr-Abl/c-Abl provoked telomerase activation in both cell lines.

View Article and Find Full Text PDF

Abrin-a consists of A-chain with N-glycosidase activity, which inhibits protein synthesis, and lectin-like B-chain responsible for binding with cell-surface receptors and penetrating of abrin-a molecule into the cells. As a lectin component, the B-chain can also participate in cell signal transduction. It has been reported that abrin induces apoptosis, but the molecular mechanism(s) of this induction have been obscure and several alternative variants have been discussed.

View Article and Find Full Text PDF

High molecular weight organic matter synthesized from mixtures of carbon monoxide, ammonia and water gases similar to those found in the interstellar medium were irradiated with a 3 MeV proton beam and analyzed by Curie point pyrolysis with detection by gas chromatograph and mass spectrometer (Pyr-GC-MS). A wide variety of organic compounds, not only a number of amide compounds, but also heterocyclic and polycyclic aromatic hydrocarbons (PAHs), were detected among the products of the pyrolysis. The present data shows that primary and primitive organic matter serving as precursors to bioorganic compounds such as amino acids, nucleic acid bases and sugar might have been formed in a gaseous mixture of similar composition to that of the interstellar dust environment.

View Article and Find Full Text PDF

Purpose: The purpose of the present study was to investigate the effects of phenothiazines (at clinically relevant doses) on the viability and proliferation of leukemic cell lines and normal lymphocytes, and to investigate the possibility of specific induction of apoptosis in leukemic cells.

Methods: Phenothiazines with different chemical structure and hydrophobicity were used: chlorpromazine (CPZ); levomepromazine (LVPZ); prometazine (PMZ); trifluoperazine (TFPZ); thioridazine (TRDZ). The leukemic cell lines used were: Daudi and Raji (derived from Burkitt's lymphoma), K-562 (derived from myelogenous leukemia), and BALL-1, MOLT-4, HPB-ALL and CCRF-HSB-2 (derived from acute lymphoblastic leukemia).

View Article and Find Full Text PDF

Residues 519-524 of Dictyostelium myosin II form a small surface loop on the actin binding face, and have been suggested to bind directly to actin through high affinity hydrophobic interactions. To test this hypothesis, we have characterized mutant myosins that lack this loop in vivo and in vitro. A mutant myosin in which this loop was replaced by an Ala residue (delta519-524/+A) was non-functional in vivo.

View Article and Find Full Text PDF

Rigid-body dynamics in the isothermal-isobaric ensemble: a test on the accuracy and computational efficiency.

J Comput Chem

June 2003

Research Institute for Computational Sciences, National Institute for Advanced Industrial Science and Technology, Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan.

We have developed a time-reversible rigid-body (rRB) molecular dynamics algorithm in the isothermal-isobaric (NPT) ensemble. The algorithm is an extension of rigid-body dynamics [Matubayasi and Nakahara, J Chem Phys 1999, 110, 3291] to the NPT ensemble on the basis of non-Hamiltonian statistical mechanics [Martyna, G. J.

View Article and Find Full Text PDF