77 results match your criteria: "National Institute for Advanced Industrial Science and Technology[Affiliation]"

We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells.

View Article and Find Full Text PDF

Probiotics, such as lactic acid bacteria (LAB) and var. , have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs), because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity.

View Article and Find Full Text PDF

Direct detection of the TROSY component of proton-attached (15)N nuclei ((15)N-detected TROSY) yields high quality spectra with high field magnets, by taking advantage of the slow (15)N transverse relaxation. The slow transverse relaxation and narrow line width of the (15)N-detected TROSY resonances are expected to compensate for the inherently low (15)N sensitivity. However, the sensitivity of (15)N-detected TROSY in a previous report was one-order of magnitude lower than in the conventional (1)H-detected version.

View Article and Find Full Text PDF

CRTAM determines the CD4+ cytotoxic T lymphocyte lineage.

J Exp Med

January 2016

Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan

Naive T cells differentiate into various effector T cells, including CD4(+) helper T cell subsets and CD8(+) cytotoxic T cells (CTL). Although cytotoxic CD4(+) T cells (CD4 +: CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4(+) T cells that express class I-restricted T cell-associated molecule (CRTAM) upon activation possesses the characteristics of both CD4(+) and CD8(+) T cells.

View Article and Find Full Text PDF

A Potent and Site-Selective Agonist of TRPA1.

J Am Chem Soc

December 2015

Molecular Profiling Research Center for Drug Discovery, National Institute for Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan.

TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules.

View Article and Find Full Text PDF

Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.

J Biomol NMR

December 2015

Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

Detection of (15)N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached (15)N nuclei (TROSY (15)NH) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow (15)N transverse relaxation and compensating for the inherently low (15)N sensitivity. The (15)N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength.

View Article and Find Full Text PDF

C-type lectin receptors (CLRs) are a large family of soluble and trans-membrane pattern recognition receptors that are widely and primarily expressed on myeloid cells. CLRs are important for cell-cell communication and host defense against pathogens through the recognition of specific carbohydrate structures. Similar to a family of Toll-like receptors, CLRs signaling are involved in the various steps for initiation of innate immune responses and promote secretion of soluble factors such as cytokines and interferons.

View Article and Find Full Text PDF

Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles.

J Cell Biol

August 2015

The Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia The Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia

Prion-like domains (PLDs) are low complexity sequences found in RNA binding proteins associated with the neurodegenerative disorder amyotrophic lateral sclerosis. Recently, PLDs have been implicated in mediating gene regulation via liquid-phase transitions that drive ribonucleoprotein granule assembly. In this paper, we report many PLDs in proteins associated with paraspeckles, subnuclear bodies that form around long noncoding RNA.

View Article and Find Full Text PDF

Explanation of non-additive effects in mixtures of similar mode of action chemicals.

Toxicology

September 2015

Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.

Many models have been developed to predict the combined effect of drugs and chemicals. Most models are classified into two additive models: independent action (IA) and concentration addition (CA). It is generally considered if the modes of action of chemicals are similar then the combined effect obeys CA; however, many empirical studies report nonlinear effects deviating from the predictions by CA.

View Article and Find Full Text PDF

Therapeutic Potential of Adipose-Derived SSEA-3-Positive Muse Cells for Treating Diabetic Skin Ulcers.

Stem Cells Transl Med

February 2015

Department of Plastic Surgery, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Research Center for Stem Cell Engineering, National Institute for Advanced Industrial Science and Technology, Ibaraki, Japan

Stage-specific embryonic antigen-3 (SSEA-3)-positive multipotent mesenchymal cells (multilineage differentiating stress-enduring [Muse] cells) were isolated from cultured human adipose tissue-derived stem/stromal cells (hASCs) and characterized, and their therapeutic potential for treating diabetic skin ulcers was evaluated. Cultured hASCs were separated using magnetic-activated cell sorting into positive and negative fractions, a SSEA-3+ cell-enriched fraction (Muse-rich) and the remaining fraction (Muse-poor). Muse-rich hASCs showed upregulated and downregulated pluripotency and cell proliferation genes, respectively, compared with Muse-poor hASCs.

View Article and Find Full Text PDF

From a viewpoint of reducing the burden on the environment and human health, an alternative method for preparing liquid-repellent surfaces without relying on the long perfluorocarbons (C((X-1)/2)F(X), X ≥ 17) has been strongly demanded lately. In this study, we have successfully demonstrated that dynamic dewettability toward various probe liquids (polar and nonpolar liquids with high or low surface tension) can be tuned by not only controlling surface chemistries (surface energies) but also the physical (solid-like or liquid-like) nature of the surface. We prepared smooth and transparent organic-inorganic hybrid films exhibiting unusual dynamic dewetting behavior toward various probe liquids using a simple sol-gel reaction based on the co-hydrolysis and co-condensation of a mixture including a range of perfluoroalkylsilanes (FASX, C((X-1)/2)F(X)CH2CH2Si(OR)3, where X = 3, 9, 13, and 17) and tetramethoxysilane (Si(OCH3)4, TMOS).

View Article and Find Full Text PDF

The effects of surface chemistry and the mobility of surface-tethered functional groups of various perfluorinated surfaces on their dewetting behavior toward polar (water) and nonpolar (n-hexadecane, n-dodecane, and n-decane) liquids were investigated. In this study, three types of common smooth perfluorinated surfaces, that is, a perfluoroalkylsilane (heptadecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilane, FAS17) monomeric layer, an amorphous fluoropolymer film (Teflon AF 1600), and a perfluorinated polyether (PFPE)-terminated polymer brush film (Optool DSX), were prepared and their static/dynamic dewetting characteristics were compared. Although the apparent static contact angles (CAs) of these surfaces with all probe liquids were almost identical to each other, the ease of movement of liquid drops critically depended on the physical (solidlike or liquidlike) natures of the substrate surface.

View Article and Find Full Text PDF

Smooth, transparent, and extremely hard zirconia (ZrO2)-based inorganic-organic hybrid films showing excellent dynamic oleophobicity, thermal durability, and hydrolytic stability were successfully prepared through a simple combination of zirconium tetrapropoxide (Zr(O(CH2)2CH3)4) with stearic acids. In this study, we have particularly focused on the effects of stearic acid molecular architecture (linear-stearic acid (LSA) and branched-stearic acid (BSA)) on surface physical/chemical properties. Although, in each case, the resulting hybrid (Zr:LSA and Zr:BSA) films achieved by a simple spin-coating method were highly smooth and transparent, the final surface properties were markedly dependent on their molecular architectures.

View Article and Find Full Text PDF

The small intestine harbors a substantial number of commensal bacteria and is sporadically invaded by pathogens, but the response to these microorganisms is fundamentally different. We identified a discriminatory sensor by using Toll-like receptor 3 (TLR3). Double-stranded RNA (dsRNA) of one major commensal species, lactic acid bacteria (LAB), triggered interferon-β (IFN-β) production, which protected mice from experimental colitis.

View Article and Find Full Text PDF

C-type lectin receptors (CLRs) are important pathogen pattern recognition molecules that recognize carbohydrate structures. Upon ligand binding, CLRs induce a variety of cellular responses, such as respiratory burst, production of cytokines and chemokines, and consequently shaping the adaptive immune responses. Recent frontier studies have demonstrated that CLRs play a significant role in development of anti-inflammatory immune responses and maintenance of host immune-homeostasis.

View Article and Find Full Text PDF

We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies.

View Article and Find Full Text PDF

Summary: Many high-throughput sequencing experiments produce paired DNA reads. Paired-end DNA reads provide extra positional information that is useful in reliable mapping of short reads to a reference genome, as well as in downstream analyses of structural variations. Given the importance of paired-end alignments, it is surprising that there have been no previous publications focusing on this topic.

View Article and Find Full Text PDF

We have successfully prepared unique inorganic-organic hybrid materials that demonstrate excellent transparency and dewettability toward various alkane liquids (n-hexadecane, n-dodecane and n-decane) without relying on conventional surface roughening and perfluorination. Such coatings were made using a novel family of hybrid materials generated by substituting carboxylic acids, with a range of alkyl chain lengths (CH(3)(CH(2))(x-2)COOH where x = total carbon number, i.e.

View Article and Find Full Text PDF

Cytosines in genomic DNA are sometimes methylated. This affects many biological processes and diseases. The standard way of measuring methylation is to use bisulfite, which converts unmethylated cytosines to thymines, then sequence the DNA and compare it to a reference genome sequence.

View Article and Find Full Text PDF

Bulk silicone nanocomposites with thermoresponsive optical behavior were fabricated using silica nanoparticle fillers within a cross-linked silicone matrix. Silica nanoparticles (25 nm diameter) were surface-modified, allowing for even distribution at 6-24 wt % within and covalent bonding to the silicone matrix. Utilizing the temperature-dependent match/mismatching of the refractive indices of the silica nanoparticle filler and the silicone matrix, bulk nanocomposites are highly transparent at room temperature and demonstrate significant increases in opacity with increasing temperature up to 100-150 °C.

View Article and Find Full Text PDF

Hard and transparent alumina (Al(2)O(3)) films with thicknesses in the range of 500 nm to 5 μm were successfully formed on polymethylmethacrylate (PMMA) and polystyrene (PS) surfaces. Our process is based on a lamination of anodized aluminum membranes (AAMs) to the polymer surfaces, followed by chemical etching. Because of capillary force, molten PS and liquid PMMA precursor were successfully pulled into the nanopores (10 nm diameter) within the Al(2)O(3) layers and solidified by cooling or polymerization, respectively.

View Article and Find Full Text PDF

Molecular ordering and molecular dynamics in isotactic-polypropylene characterized by solid state NMR.

J Phys Chem B

January 2010

Research Institute of Nanotechnology, National Institute for Advanced Industrial Science and Technology, Central 5-1 Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan.

The order-disorder phenomenon of local packing structures, space heterogeneity, and molecular dynamics and average lamellar thickness, , of the alpha form of isotactic polypropylene (iPP) crystallized at various supercooling temperatures, DeltaT, are investigated by solid-state (SS) NMR and SAXS, respectively. increases with lowering DeltaT, and extrapolations of (-1) versus averaged melting point, , gives an equilibrium melting temperature, T(m)(0) = 457 +/- 4 K. High-power TPPM decoupling with a field strength of 110 kHz extremely improves (13)C high-resolution SS-NMR spectral resolution of the ordered crystalline signals at various DeltaT.

View Article and Find Full Text PDF

Dithizone nanofiber-coated membranes (dithizone membranes), which are useful for sensitive and selective determination of Hg(II), were fabricated. Simply by filtration of the aqueous dispersion of dithizone nanofiber through a cellulose ester membrane filter, a dithizone nanofiber layer of less than 500 nm thickness was coated firmly and uniformly over the membrane filter surface. The steel blue color of the membrane remained unchanged for more than three months when fabricated in the presence of ascorbic acid and stored with an oxygen absorber in an evacuated aluminium bag.

View Article and Find Full Text PDF