153 results match your criteria: "National I-Lan University[Affiliation]"

This study investigated the feasibility of using/reusing commercial activated carbon (CAC) for the capture of high molecular weight and high-boiling point volatile organic compounds (HBPVOCs). The CAC was first characterized using proximate analysis, heat value analysis, iodine value analysis, element analysis, inductively coupled plasma spectrometry, and specific surface area analysis. We then assessed the adsorption/desorption performance of a CAC-based PSA system for the removal of Butyl Cellosolve (BCS), a HBPVOC commonly used in paints, coatings, cleaners, and industrial processes.

View Article and Find Full Text PDF
Article Synopsis
  • L. (TA) pollen has been traditionally used in Chinese medicine for treating traumas and contains bioactive compounds with various health benefits.
  • The study extracts TA pollen using water and ethanol to analyze its antioxidant properties and phytochemical composition through specific assays and HPLC analysis.
  • Results show that the water extract has higher antioxidant activity and power generation potential, suggesting that TA pollen could lead to new antiviral medications with lower toxicity and costs.
View Article and Find Full Text PDF

Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection.

Bioresour Technol

July 2024

College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China. Electronic address:

Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency.

View Article and Find Full Text PDF

Microbial Desalination Cells (MDCs) are an electrochemical process that harnesses microbial reactions to simultaneously treat wastewater, generate power, and desalinate water. By utilizing microbial decomposition of organic pollutants in wastewater, MDCs offer a sustainable and energy-efficient alternative to conventional desalination technologies. The technical framework of MDCs emphasizes the integration of water-electricity principles, making them promising for future applications in seawater desalination, wastewater treatment, resource recovery, and water softening.

View Article and Find Full Text PDF

In this study, we analyze the influences of carbon nanotube (CNT) addition on the martensite transformation and internal friction of Cu-Al-Ni shape-memory alloys (SMAs). X-ray diffraction and differential scanning calorimetry results demonstrate that Cu-13.5Al-4Ni-xCNT (x = 0, 0.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) are based on the biochemical reaction of microorganisms to decompose organic wastewater for converting chemical energy into power energy. MFCs are considered an environmentally friendly technology that is gaining popularity due to their simultaneous digestion and energy production abilities. To enhance its real application in wastewater treatment, this study proposes to use a non-woven material for replacing the usage of expensive membranes in MFCs.

View Article and Find Full Text PDF
Article Synopsis
  • Jing Guan Fang (JGF) is an anti-COVID-19 herbal decoction made from five medicinal herbs, and this study explores its antiviral effects using electrochemical techniques and microbial fuel cells as a testing platform.* -
  • Through phytochemical analysis, the study links the content of polyphenols and flavonoids in JGF to its antioxidant capacities and bioenergy-stimulating abilities, providing insights into its potential mechanisms of action.* -
  • Key findings indicate that JGF significantly enhances bioenergy stimulation and suggests its antiviral action involves reducing inflammation, inhibiting viral proteins, and activating immune responses through specific flavonoids identified in the extract.*
View Article and Find Full Text PDF

Background: Traditional herbal medicines usually contain electron shuttle (ES)-like structures compounds which are potential candidates for antiviral compounds selection. is applied as a biomaterial to decipher its potential applications in bioenergy extraction in microbial fuel cells (MFCs) and anti-COVID-19 via molecular docking evaluation.

Methods: leaves extracts by water and 60% ethanol solvent were analyzed for total polyphenols, antioxidant activity, cyclic voltammetry (CV), and MFCs.

View Article and Find Full Text PDF

This study examined the evolution of the microstructure, microhardness, corrosion resistance, and selective leaching properties of oxide films formed on the surface of a Ti-50Zr (%) alloy during heat treatment at 600 °C for various time intervals. According to our experimental results, the growth and evolution of oxide films can be divided into three stages. In stage I (heat treatment for less than 2 min), ZrO was first formed on the surface of the TiZr alloy, which slightly improved its corrosion resistance.

View Article and Find Full Text PDF

This paper presents a novel approach for directly hiding the pixel values of a small color watermark in a carrier color image. Watermark embedding is achieved by modulating the gap of paired coefficient magnitudes in the discrete cosine transform domain according to the intended pixel value, and watermark extraction is the process of regaining and regulating the gap distance back to the intensity value. In a comparison study of robustness against commonly encountered attacks, the proposed scheme outperformed seven watermarking schemes in terms of zero-normalized cross-correlation (ZNCC).

View Article and Find Full Text PDF

Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction.

View Article and Find Full Text PDF

Carbon@titania yolk-shell nanostructures are successfully synthesized at different calcination conditions. These unique structure nanomaterials can be used as a photocatalyst to degrade the emerging water pollutant, acetaminophen (paracetamol). The photodegradation analysis studies have shown that the samples with residual carbon nanospheres have improved the photocatalytic efficiency.

View Article and Find Full Text PDF

Norfloxacin (NFX) is a commonly consumed synthetic antibiotic drug to cure many adverse infectious diseases of humans worldwide, but their presence in almost all aquatic environments has grown into severe global health concerns. In this study, the power performance of dual-chamber microbial fuel cells (MFCs) with two different types of base anodes (graphite felt and activated carbon cloth) were tested with a coating of NiO/MnO for removal of NFX in wastewater. As transition metal oxides have excellent electrochemical stability and a higher specific capacitance, their application in MFC for antibiotic removal and wastewater treatment would be an interesting study.

View Article and Find Full Text PDF

This study attempted to manage the food waste and soybean curd residue generated in Taiwan's National Ilan University by black soldier fly-aided co-composting. The food waste and soybean curd residue were co-composted with rice husk as a bulking agent in 4:1 ratio and 0.42 mg BSF/g waste.

View Article and Find Full Text PDF

Background: This first-attempt study explored indigenous herbs from agricultural waste with bioenergy and biorefinery-stimulating potentials for possible anti-COVID-19 drug development. As prior novel study revealed, medicinal herbs abundant in -dihydroxyl substituents and flavonoid-bearing chemicals were likely not only electron shuttle (ES)-steered, but also virus transmission-resisted.

Methods: Herbal extract preparation from agricultural wastes were implemented via traditional Chinese medicine (TCM) decoction pot.

View Article and Find Full Text PDF

Background: Traditional Chinese medicine (TCM) has been used as an "immune booster" for disease prevention and clinical treatment since ancient China. However, many studies were focused on the organic herbal extract rather than aqueous herbal extract (AHE; decoction). Due to the COVID-19 pandemics, this study tended to decipher phytochemical contents in the decoction of herbs and derived bioactivities (e.

View Article and Find Full Text PDF

This study involved novel-designed sludge biochar (SB) adsorbed for arsenic removal with lower operating costs and higher adsorption efficiency properties. Generally, biochar only relies on micropores for pollutant adsorption, but physical adsorption is not highly efficient for arsenic removal. Therefore, in order to improve the removal efficiency of arsenic by SB, diethylenetriamine (DETA) and FeCl were used in this study to modify the surface of SB by an immersion method.

View Article and Find Full Text PDF

Beeswax and resin are the main components of propolis, both of which are hydrophobic. The use of emulsifiers helps to improve the extraction of active propolis compounds and makes them more widely used. In this study, we investigated the optimal parameters for the emulsification of Taiwanese green propolis (TGP) using different polysorbates (polysorbate-20, polysorbate-60, and polysorbate-80) and evaluated the effects on the immunomodulatory response in broilers.

View Article and Find Full Text PDF

The continuous growth of population and the steady improvement of people's living standards have accelerated the generation of massive food waste. Untreated food waste has great potential to harm the environment and human health due to bad odor release, bacterial leaching, and virus transmission. However, the application of traditional disposal techniques like composting, landfilling, animal feeding, and anaerobic digestion are difficult to ease the environmental burdens because of problems such as large land occupation, virus transmission, hazardous gas emissions, and poor efficiency.

View Article and Find Full Text PDF

The research on microbial fuel cells (MFCs) is rising tremendously but its commercialization is restricted by several microbiological, material, and economic constraints. Hence, a systematic assessment of the research articles published previously focusing on potential upcoming directions in this field is necessary. A detailed multi-perspective analysis of various techniques for enhancing the efficiency of MFC in terms of electric power production is presented in this paper.

View Article and Find Full Text PDF

A breakthrough dynamic-osmotic membrane bioreactor/nanofiltration hybrid system for real municipal wastewater treatment and reuse.

Bioresour Technol

December 2021

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia. Electronic address:

This study designed a Dynamic-Osmotic membrane bioreactor/nanofiltration (OsMBR/NF) system for municipal wastewater treatment and reuse. Results indicated that a continuously rotating FO module with 60 RPM in Dynamic-OsMBR system could enhance shear stress and reduce cake layer of foulants, leading to higher flux (50%) compared to Traditional-OsMBR during a 40-operation day. A negligible specific reverse salt flux (0.

View Article and Find Full Text PDF

Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review.

Chemosphere

January 2022

Department of Mechanical and Electromechanical Engineering, National I Lan University, I Lan, Taiwan; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India. Electronic address:

The conflict between climate change and growing global energy demand is an immense sustainability challenge that requires noteworthy scientific and technological developments. Recently the importance of microbial fuel cell (MFC) on this issue has seen profound investigation due to its inherent ability of simultaneous wastewater treatment, and power production. However, the challenges of economy-related manufacturing and operation costs should be lowered to achieve positive field-scale demonstration.

View Article and Find Full Text PDF

New insights into ball milling effects on MgAl-LDHs exfoliation on biochar support: A case study for cadmium adsorption.

J Hazard Mater

August 2021

National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.

Ball milling (BM) as a solvent-free technology has been widely used to tailor the biochar-based adsorbents with high porosity and well dispersion for enhancing their environmental applications. In this study, the ball-milled layered double hydroxides (LDHs) biochar composite (B-LDHs-BC) was successfully fabricated with BM method for Cd(II) adsorption and the BM effects on the LDHs-BC structure-performance relationships were investigated. The solid-state characterization demonstrated the LDHs were successfully exfoliated by BM on the B-LDHs-BC surface which was identified by the enlarged basal spacing and reduced crystallite size of the LDHs.

View Article and Find Full Text PDF

Recent advances in the improvement of bi-directional electron transfer between abiotic/biotic interfaces in electron-assisted biosynthesis system.

Biotechnol Adv

March 2022

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, PR China. Electronic address:

As an important biosynthesis technology, electron-assisted biosynthesis (EABS) system can utilize exogenous electrons to regulate the metabolic network of microorganisms, realizing the biosynthesis of high value-added chemicals and CO fixation. Electrons play crucial roles as the energy carriers in the EABS process. In fact, efficient interfacial electron transfer (ET) is the decisive factor to realize the rapid energy exchange, thus stimulating the biosynthesis of target metabolic products.

View Article and Find Full Text PDF

Waste recycling and reuse will result in significant material and energy savings. In this research, usage of hospital sludge as a biochar adsorbent for wastewater treatment plants was investigated. Microwave carbonization was used to carbonize the sludge and then chemically activated with ZnCl₂to increase surface area and porosity.

View Article and Find Full Text PDF