9 results match your criteria: "National Forestry Resources Research Institute[Affiliation]"

Background: Jackfruit (Artocarpus heterophyllus) is an economically valuable fruit tree in Uganda. However, the production of jackfruit in Uganda is low. Additionally, because of deforestation, genetic erosion of the resource is predicted before its exploitation for crop improvement and conservation.

View Article and Find Full Text PDF

Determining the extent and distribution of genetic diversity is an essential component of plant breeding. In the present study, we explored the genetic diversity and population structure of Vernonia amygdalina, a fodder, vegetable and medicinal species of Africa and some parts of Yemen. Most empirical studies demonstrate that populations that are separated by geographic or ecological factors may experience genetic differentiation resulting from restricted gene flow between populations.

View Article and Find Full Text PDF

Establishing the genetic diversity and population structure of a species can guide the selection of appropriate conservation and sustainable utilization strategies. Next-generation sequencing (NGS) approaches are increasingly being used to generate multi-locus data for genetic structure determination. This study presents the genetic structure of a fodder species -Trema orientalis based on two genome-wide high-throughput diversity array technology (DArT) markers; silicoDArT and single nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

Objective: A sustainable way of providing essential nutrients from crops for the poor and undernourished is biofortification, through plant breeding. This study characterised the intraspecific variation of selected nutritional elements in the flakes and seeds of Ugandan jackfruit (Artocarpus heterophyllus) plus the phytochemical composition of leaves. The overall aim was to explore possibilities of selecting for varieties that are higher in selected essential nutrients.

View Article and Find Full Text PDF

Background: Plants are attacked by diverse insect and mammalian herbivores and respond with different physical and chemical defences. Transcriptional changes underlie these phenotypic changes. Simulated herbivory has been used to study the transcriptional and other early regulation events of these plant responses.

View Article and Find Full Text PDF

Catherine Hobaiter, John Walter Akankwasa, Geresomu Muhumuza, Moreen Uwimbabazi and Inza Koné discuss the importance of local specialists in science.

View Article and Find Full Text PDF

Primate foraging is influenced by the spatial and temporal distribution of foods, which may facilitate or constrain optimal nutrient intakes. Chimpanzees are frugivorous primates that mainly subsist on ripe fruit that is typically low in available protein (AP) and high in easily digestible carbohydrates. Because chimpanzees prefer ripe fruit and often eat it in large quantities compared with other foods, we hypothesized that protein intake would be tightly regulated while non-protein energy (NPE) would vary with fruit intake.

View Article and Find Full Text PDF

Objective: The objective of the study was to investigate the relative abundance and effect of post-harvest treatment on total phenolics (TP) and total alkaloids in the leaves and bark of Carissa edulis and Zanthoxylum chalybeum, which would give an indication of the suitability of leaves as alternative sources of medicine in these plant species.

Results: Results indicated higher levels of total phenolics than total alkaloids in both of the species under both freezing and air drying conditions. While more alkaloids were found in leaves compared to bark, there was no difference in abundance of phenols between the plant parts of both species.

View Article and Find Full Text PDF

In flowering plants, self-incompatibility is an effective genetic mechanism that prevents self-fertilization. Most Prunus tree species exhibit a homomorphic gametophytic self-incompatibility (GSI) system, in which the pollen phenotype is encoded by its own haploid genome. To date, no identification of S-alleles had been done in Prunus africana, the only member of the genus in Africa.

View Article and Find Full Text PDF