45 results match your criteria: "National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass[Affiliation]"

Magnetic Molecularly Imprinted Polymers with Hydrophilic Shells for the Selective Enrichment and Detection of Rosmarinic Acid in Aqueous Extraction.

Plants (Basel)

December 2024

Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.

Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of , , and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.

View Article and Find Full Text PDF

Facile green treatment of mixed cellulose ester membranes by deep eutectic solvent to enhance dye removal and determination.

Int J Biol Macromol

December 2024

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. Electronic address:

Synthetic dye production and the consequent generation of dye-rich wastewater are major concerns of water quality in many countries. We developed a sustainable approach with deep eutectic solvent (DES) treatment to enhance the efficiency of mixed cellulose ester (MCE) membrane-based dye removal material. The DES composition and treatment conditions were optimized, and the treated membranes were comprehensively characterized.

View Article and Find Full Text PDF

UV-radiation manufacturing of natural macromolecular products salecan and tannic acid-based functional gel material as superadsorbent for toluidine blue remediation.

Int J Biol Macromol

November 2024

Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China.

Adsorbent materials constructed from natural macromolecular products are favored because of their wide range of sources, biodegradability, and environmental friendliness. Salecan is a novel extracellular polysaccharide with ideal physicochemical and biological activities. Here, we have designed a polymer gel through UV-initiated polymerization of [2-(Methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA) in the mixture of salecan and tannic acid.

View Article and Find Full Text PDF

Recent advances in visible-light-promoted construction of tetrahydroquinolines from dimethylanilines and maleimides are documented. Homogeneous and heterogeneous photocatalytic systems, as well as the reaction mechanism, are emphasized. The mechanism of this photocatalytic annulation reaction is quite clear, , dimethylanilines and maleimides serve as the radical precursors and radical acceptors, respectively.

View Article and Find Full Text PDF

Photocatalytic Sulfonylation: Innovations and Applications.

Chemistry

October 2024

College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.

Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed.

View Article and Find Full Text PDF

Advanced-design cross-linked binder enables high-performance silicon-based anodes through in-situ crosslinking based on sodium carboxymethyl cellulose and poly-lysine.

Int J Biol Macromol

August 2024

Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.

Practical employment of silicon (Si) electrodes in lithium-ion batteries (LIBs) is limited due to the severe volume changes suffered during charging-discharging process, causing serious capacity fading. Here, a composite polymer (CP-10) containing sodium carboxymethyl cellulose (CMC-Na) and poly-lysine (PL) is proposed for the binder of Si-based anodes, and a multifunctional strategy of "in-situ crosslinking" is achieved to alleviate the severe capacity degradation effectively. A cross-linked three-dimensional (3D) network is established through the strong hydrogen bonding interaction and reversible electrostatic interactions within CP-10, offering favorable mechanical tolerance for the extreme volume expansion of Si.

View Article and Find Full Text PDF

Unlocking the potential of phenolated kraft lignin as a versatile feed additive.

Int J Biol Macromol

June 2024

Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, PR China; Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, PR China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

Lignin, a renewable natural antioxidant and bacteriostat, holds promise as a versatile, cost-effective feed additive. However, traditional industrial lignin faces limitations, including low reactivity, poor uniformity, and unstable properties, necessitating chemical modification. Complex modification methods pose economic and toxicity challenges, so this study adopted a relatively simple alkali-catalyzed phenolization approach, using phenol, catechol, and pyrogallol to modify kraft lignin, and characterized the resulting products using various techniques.

View Article and Find Full Text PDF

Fabrication of lignosulfonate-derived porous carbon via pH-tunable self-assembly strategy for efficient atrazine removal.

Int J Biol Macromol

June 2024

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China. Electronic address:

Herein, a straightforward protocol was developed for the one-pot synthesis of N-doped lignosulfonate-derived carbons (NLDCs) with a tunable porous structure using natural amino acids-templated self-assembly strategy. Specifically, histidine was employed as a template reagent, leading to the preparation of 10-NLDC-21 with remarkable characteristics, including the large specific surface area (S = 1844.5 m/g), pore volume (V = 1.

View Article and Find Full Text PDF

Fabrication of polysaccharide-coated oleanolic acid-curcumin-coassembled nanoparticles (OA/Cur NPs): Enhancement of colloidal stability and water solubility.

Food Chem

September 2024

Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey.

Natural terpenoid carriers, such as oleanolic acid (OA), can enhance the water solubility and stability of hydrophobic compounds such as curcumin (Cur). However, improving the colloidal stability of nanoparticle emulsions and resolving the redispersion problem of freeze-dried nanoparticle powders remain significant challenges. In this study, we fabricated coassembled oleanolic acid-curcumin nanoparticles (OA/Cur NPs) and applied a polysaccharide surface coating method to improve their colloidal stability and water solubility.

View Article and Find Full Text PDF

In this paper, molecules with AIE red light properties were designed by coupling dehydroabietic acid diarylamine and 2,3-diphenylfumaronitrile, which were designated 2DTPA-CN and 2TPA-CN. The emission wavelengths were 683 nm and 701 nm, respectively. The 2DTPA-CN and 2TPA-CN showed typical AIE characteristics with large Stokes shifts of 7.

View Article and Find Full Text PDF

In this study, a simple and eco-friendly method was used to treat alkaline lignin with an acidic deep eutectic solvent (DES) to obtain regenerated lignin for the efficient adsorption of pollutant dyes from aqueous environment. Based on the yield and adsorption capacity of the sorbent for these dyes, conditions such as the type and concentration of DES component, solid-to-liquid ratio, reaction time, and temperature were optimized. By characterizing and comparing alkali lignin with regenerated lignin, a series of reactions were demonstrated to occur during the DES treatment process.

View Article and Find Full Text PDF

This study explores the coordination dynamics between dietary polyphenols, specifically kaempferol, quercetin, and myricetin, and Cu ions in aqueous environments. A novel synthesis method for flavonol-Cu(II) coordination compounds is introduced, effectively reducing interference from free metal ions. Our results reveal consistent binding patterns of Cu ions with flavonols (2:1 ratio of flavonol to Cu(II)), predominantly at the 4,5 sites.

View Article and Find Full Text PDF

Highly Strong, Tough, and Cryogenically Adaptive Hydrogel Ionic Conductors via Coordination Interactions.

Research (Wash D C)

January 2024

College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.

Despite the promise of high flexibility and conformability of hydrogel ionic conductors, existing polymeric conductive hydrogels have long suffered from compromises in mechanical, electrical, and cryoadaptive properties due to monotonous functional improvement strategies, leading to lingering challenges. Here, we propose an all-in-one strategy for the preparation of poly(acrylic acid)/cellulose (PAA/Cel) hydrogel ionic conductors in a facile yet effective manner combining acrylic acid and salt-dissolved cellulose, in which abundant zinc ions simultaneously form strong coordination interactions with the two polymers, while free solute salts contribute to ionic conductivity and bind water molecules to prevent freezing. Therefore, the developed PAA/Cel hydrogel simultaneously achieved excellent mechanical, conductive, and cryogenically adaptive properties, with performances of 42.

View Article and Find Full Text PDF

Preparation, characterization, and application of waterborne lignin-based epoxy resin as eco-friendly wood adhesive.

Int J Biol Macromol

February 2024

Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China.

A series of novel waterborne lignin-based epoxy resin emulsions (WLEPs) were successfully synthesized, and then the WLEPs were cured with polyamide (PA) to give formaldehyde-free wood adhesives with high-performance. The chemical structures and properties of WLEP emulsions were determined. The effects of the emulsifiers on thermal and mechanical properties of the adhesives were investigated, and the potential application of WLEPs in the formulation of plywood were also evaluated.

View Article and Find Full Text PDF

A visible-light-induced β-acyl difunctionalization of alkenes with acyl oxime esters and various nucleophiles was developed to achieve molecular complexity from readily available raw materials via oxidative radical-polar crossover. A variety of nucleophiles, including H-sulfoximines, indoles, indazole, and trimethoxybenzene, were all effectively applicable to the sustainable reaction system. The novel synthetic strategy features mild reaction conditions, a broad substrate scope (39 examples), easy scale-up, and excellent regioselectivity.

View Article and Find Full Text PDF

Nanocellulose-graphene composites: Preparation and applications in flexible electronics.

Int J Biol Macromol

December 2023

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

In recent years, the pursuit of high-performance nano-flexible electronic composites has led researchers to focus on nanocellulose-graphene composites. Nanocellulose has garnered widespread interest due to its exceptional properties and unique structure, such as renewability, biodegradability, and biocompatibility. However, nanocellulose materials are deficient in electrical conductivity, which limits their applications in flexible electronics.

View Article and Find Full Text PDF

Background: Phenolic acids are widespread in foods and are beneficial to human health. However, the role of metal ions in influencing the binding of proteins with phenolic acids that contain the same parent nucleus structure remains unclear. This study investigated the inhibitory effect of caffeic acid (CA) and chlorogenic acid (CHA) on α-glucosidase and the biological effect of copper on this process.

View Article and Find Full Text PDF

A strategy utilizing silver-catalyzed oxidative decarboxylation radical cascade cyclization of arylthiodifluoroacetic acids with alkenes for the simple and efficient preparation of difluoromethylated thiochromanes and 2,2-disubstituted--arylbutanamides derivatives has been developed. This approach includes good functional group tolerance, easily accessible starting materials, and operational simplicity.

View Article and Find Full Text PDF

Temperature-Mediated Phase Separation Enables Strong yet Reversible Mechanical and Adhesive Hydrogels.

ACS Nano

July 2023

Ningbo Institute of Materials Technology and Engineering, Institute of New Energy Technology, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.

Hydrogels with strong yet reversible mechanical and adhesive properties fabricated in a facile and friendly manner are important for engineering and intelligent electronics applications but are challenging to create and control. Existing approaches for preparing hydrogels involve complicated pretreatments and produce hydrogels that suffer from limited skin applicability. Copolymerized hydrogels are expected to present an intriguing target in this field by means of thermoresponsive features, while the perceived intrinsic flaws of brittleness, easy fracture, and weak adhesion enervate the development prospects.

View Article and Find Full Text PDF

Background: Diabetes mellitus poses a substantial threat to public health due to rising morbidity and mortality. α-Glucosidase is one of the key enzymes affecting diabetes. Herein, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epigallocatechin (EGC) were applied to clarify the role of the galloyl moiety of tea polyphenols in the inhibition of glycation and α-glucosidase activity.

View Article and Find Full Text PDF

The subject of this investigation is a new method for the construction of sulfonylated heterocycles which overcomes the limitations of classical approaches using a cheap feedstock sulfonylating agent, especially under photocatalyst- and metal-free conditions.

View Article and Find Full Text PDF

Visible-Light-Induced Annulation of Iodonium Ylides and 2-Isocyanobiaryls to Access 6-Arylated Phenanthridines.

J Org Chem

July 2023

Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China.

A 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4-CzIPN)-photocatalyzed cascade arylation/cyclization reaction of 2-isocyanobiaryls and iodonium ylides was established for the synthesis of 6-arylated phenanthridines. This is the first example of employing iodonium ylides as aryl radical sources in a visible-light-induced radical cascade cyclization reaction.

View Article and Find Full Text PDF

Thianthrenium-Enabled Phosphorylation of Aryl C-H Bonds via Electron Donor-Acceptor Complex Photoactivation.

Org Lett

May 2023

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

An efficient strategy for the preparation of aryl phosphonates via blue-light-promoted single electron transfer process of an EDA complex between phosphites and thianthrenium salts has been demonstrated. The corresponding substituted aryl phosphonates were obtained in good to excellent yields, and the byproduct thianthrene can be recovered and reused in quantity. This developed method realizes the construction of aryl phosphonates through the indirect C-H functionalization of arenes, which has potential application value in drug discovery and development.

View Article and Find Full Text PDF

Sustainable polysaccharide-based materials for intelligent packaging.

Carbohydr Polym

August 2023

Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

View Article and Find Full Text PDF

The catalytic hydrodeoxygenation of bio-oil for upgradation from lignocellulosic biomass.

Int J Biol Macromol

July 2023

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

The increasing depletion of oil resources and the environmental problems caused by using much fossil energy in the rapid development of society. The bio-oil becomes a promising alternative energy source to fossil. However, bio-oil cannot be directly utilized, owing to its high proportion of oxygenated compounds with low calorific value and poor thermal stability.

View Article and Find Full Text PDF