1,189 results match your criteria: "National Engineering Research Center for Tissue Restoration and Reconstruction[Affiliation]"
ACS Nano
January 2025
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
The discovery of tertiary lymphoid structures (TLS) within tumor tissues provides a promising avenue to promote the efficacy of cancer immunotherapy. Yet, the lack of effective strategies to induce TLS formation poses a substantial obstacle. Thus, the exploration of potential inducers for TLS formation is of great interest but remains challenging.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China.
A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China.
Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging.
View Article and Find Full Text PDFBiomaterials
December 2024
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).
View Article and Find Full Text PDFACS Nano
December 2024
School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China.
Chemotherapy is the primary treatment option for pancreatic cancer, although nanocarrier-based drug delivery systems often struggle with multiple physiological barriers, limiting their therapeutic efficacy. Here, we developed a pH/reactive oxygen species (ROS) dual-sensitive self-adaptive nanocarrier (DAT) encapsulating camptothecin (CPT), an analog of the pancreatic chemotherapeutic drug irinotecan (CPT-11), to enhance chemotherapy outcomes in orthotopic pancreatic cancer by addressing multiple physiological barriers. The nanocarrier features a peripherally positively charged arginine (Arg) residue on DAT and is masked with an acid-labile 2,3-dimethylmaleic anhydride (DA) to improve circulation time.
View Article and Find Full Text PDFACS Nano
December 2024
Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China.
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Small
December 2024
Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Immunomodulation is essential for implants to regulate tissue regeneration, while bioelectricity plays a fundamental role in regulating immune activities. Under natural preferences, the bone matrix electrical microenvironment is heterogeneous in the nanoscale, which provides fundamental electrical cues to regulate bone immunity and regenerative repair. However, remodeling bone nanoscale heterogeneous electrical microenvironment remains a challenge, and the underlying immune modulation mechanism remains to be explored.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China.
Multidrug resistance of tumor cells has greatly limited the chemotherapy effect. The development of reliable strategies to deal with tumor multidrug resistance is highly desirable for tumor therapy. In this work, a near-infrared II (NIR II) luminogen was rationally designed and prepared, which could act as a photothermal reagent to reverse the drug resistance of tumor cells by reducing the related protein expression, achieving a high inhibition efficiency with the synergistic effect of chemotherapeutic drugs.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China.
Stem cell-derived blood vessel organoids are embedded in extracellular matrices to stimulate vessel sprouting. Although vascular organoids in 3D collagen I-Matrigel gels are currently available, they are primarily capillaries composed of endothelial cells (ECs), pericytes, and mesenchymal stem-like cells, which necessitate mature arteriole differentiation for neovascularization. In this context, the hypothesis that matrix viscoelasticity regulates vascular development is investigated in 3D cultures by encapsulating blood vessel organoids within viscoelastic gelatin/β-CD assembly dynamic hydrogels or methacryloyl gelatin non-dynamic hydrogels.
View Article and Find Full Text PDFACS Omega
December 2024
RayBiotech Guangzhou Co., Ltd., 79 Ruihe Road, Huangpu District, Guangzhou, Guangdong 510535, China.
A DNA-antibody conjugate is a synthetic molecule that combines the unique functions of both an antibody and DNA. With the increased accessibility of commercialized kits, the procedure for constructing conjugates is simplified and the requirement for chemistry background is reduced. As a result, the difficulty of preparing a DNA-antibody conjugate has been significantly lowered.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China.
Aggregation-induced emission luminogen (AIEgens)-based photothermal therapy (PTT) has grown into a sparkling frontier for tumor ablation. However, challenges remain due to the uncoordinated photoluminescence (PL) and photothermal properties of classical AIEgens, along with hyperthermia-induced antiapoptotic responses in tumor cells, hindering satisfactory therapeutic outcomes. Herein, a near-infrared (NIR) spiro-AIEgen was designed for boosted PTT by auxiliary DNAzyme-regulated tumor cell sensitization.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China.
The need for accurate point-of-care (POC) tools, driven by increasing demands for precise medical diagnostics and monitoring, has accelerated the evolution of biosensor technology. Integrable 2D materials-based field-effect transistor (2D FET) biosensors offer label-free, rapid, and ultrasensitive detection, aligning perfectly with current biosensor trends. Given these advancements, this review focuses on the progress, challenges, and future prospects in the field of 2D FET biosensors.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China.
We present a versatile DNA-based LYTAC framework that allows control over the valency of chimeras and the distance between ligands through DNA self-assembly. By evaluating the degradation capabilities of LYTACs with 1, 3, and 9 valences, we confirm the broad applicability of the multivalent enhancement effect across different lysosome-targeting receptor-mediated degradation pathways. Our findings provide valuable insights into improving the degradation efficiency of LYTACs.
View Article and Find Full Text PDFJ Control Release
December 2024
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China. Electronic address:
RNA-based vaccines against SARS-CoV-2 have demonstrated promising protective immunity against the global COVID-19 epidemic. Enhancing the intensity and duration of mRNA antigen expression is anticipated to markedly boost antiviral immune responses. Self-amplifying RNA (saRNA) represents a next-generation platform for RNA-based vaccines, amplifying transcripts in situ to augment the expression of encoded immunogens.
View Article and Find Full Text PDFZhongguo Yi Liao Qi Xie Za Zhi
November 2024
Testing Center, Guangdong Institute of Advanced Biomaterials and Medical Devices, Guangzhou, 510535.
Mechanically-induced hemolysis is an important index for evaluating the blood compatibility of medical devices. It mainly evaluates the risk of mechanical hemolysis under simulated clinical use conditions of medical devices. The existing hemolysis test standards mainly evaluate the risk of material-induced hemolysis and cannot evaluate the risk of mechanically-induced hemolysis.
View Article and Find Full Text PDFNat Commun
December 2024
Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
Redox balance is essential for sustaining normal physiological metabolic activities of life. In this study, we present a photocatalytic system to perturb the balance of NADH/NAD in oxygen-free conditions, achieving photocatalytic therapy to cure anaerobic bacterial infected periodontitis. Under light irradiation, the catalyst TBSMSPy can bind bacterial DNA and initiate the generation of radical species through a multi-step electron transfer process.
View Article and Find Full Text PDFACS Nano
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.
Angew Chem Int Ed Engl
December 2024
College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China.
Biomed Mater
December 2024
Department of Orthopaedics, Guangzhou First People's Hospital, Guangzhou 510180, People's Republic of China.
The increasing clinical occurrence of segmental bone defects is demanding constant improvements in bone transplantation to overcome issues of limited resources, immune rejection and poor structural complement. This study aimed to develop a personalized bone defect repair modality using 3D-printed tricalcium phosphate (-TCP) grafts and to assess its osteogenic impacts in a femoral segmental defect model in beagles, as a basis for clinical studies and application. A-TCP scaffold was designed and manufactured using computer-aided design.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China.
Precise tumor diagnosis and treatment remain complex challenges. While numerous fluorescent probes have been developed for tumor-specific imaging and therapy, few exhibit effective function in vivo. Herein, a probe called TQ-H is designed that can realize robust theranostic effects both in vitro and in vivo.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China.
Stem Cell Res Ther
November 2024
Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.