3 results match your criteria: "National Energy Technology Laboratory-Regional University Alliance (NETL-RUA)[Affiliation]"

Geologic carbon storage in deep saline aquifers is considered a feasible and possible approach of mitigating the problem of increasing greenhouse gas emissions. However, there are latent risks in which carbon dioxide (CO2) could migrate from the deep saline formations to shallower aquifers. In the event of a significant CO2 leakage to an underground source of drinking water, CO2 will dissolve in the water, thereby increasing its acidity, which could potentially enhance the solubility of various aquifer constituents, including hazardous compounds, subsequently compromising groundwater quality due to increased concentration of aqueous metals.

View Article and Find Full Text PDF

Leakage of injected carbon dioxide (CO2) or resident fluids, such as brine, is a major concern associated with the injection of large volumes of CO2 into deep saline formations. Migration of brine could contaminate drinking water resources by increasing their salinity or endanger vegetation and animal life as well as human health. The main objective of this study was to investigate the effect of sodium chloride (NaCl) concentration on the detection of calcium and potassium in brine samples using laser-induced breakdown spectroscopy (LIBS).

View Article and Find Full Text PDF

Amino acid ionic liquids (AAILs) are potential green substitutes of aqueous amine solutions for carbon dioxide (CO2) capture. However, the viscous nature of AAILs greatly hinders their further development in CO2 capture applications. In this contribution, 1-ethyl-3-methylimidazolium lysine ([EMIM][Lys]) was synthesized and immobilized into a porous poly(methyl methacrylate) (PMMA) microsphere support for post-combustion CO2 capture.

View Article and Find Full Text PDF