5 results match your criteria: "National Creative Research Initiative Centre for Multi-Dimensional Directed Nanoscale Assembly[Affiliation]"

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Unzipping of the basal plane offers a valuable pathway to uniquely control the material chemistry of 2D structures. Nonetheless, reliable unzipping has been reported only for graphene and phosphorene thus far. The single elemental nature of those materials allows a straightforward understanding of the chemical reaction and property modulation involved with such geometric transformations.

View Article and Find Full Text PDF

Miniaturization of electronics demands electromagnetic interference (EMI) shielding of nanoscale dimension. The authors report a systematic exploration of EMI shielding behavior of 2D Ti C T MXene assembled films over a broad range of film thicknesses, monolayer by monolayer. Theoretical models are used to explain the shielding mechanism below skin depth, where multiple reflection becomes significant, along with the surface reflection and bulk absorption of electromagnetic radiation.

View Article and Find Full Text PDF

Graphene, despite being the best known strong and electrical/thermal conductive material, has found limited success in practical applications, mostly due to difficulties in the formation of desired large-scale highly organized structures. Our discovery of a liquid crystalline phase formation in graphene oxide dispersion has enabled a broad spectrum of highly aligned graphene-based structures, including films, fibers, membranes, and mesoscale structures. In this review, the current understanding of the structure-property relationship of graphene oxide liquid crystals (GOLCs) is overviewed.

View Article and Find Full Text PDF

We report graphene@polymer core-shell fibers (G@PFs) composed of N and Cu codoped porous graphene fiber cores uniformly coated with semiconducting polymer shell layers with superb electrochemical characteristics. Aqueous/organic interface-confined polymerization method produced robust highly crystalline uniform semiconducting polymer shells with high electrical conductivity and redox activity. When the resultant core-shell fibers are utilized for fiber supercapacitor application, high areal/volume capacitance and energy densities are attained along with long-term cycle stability.

View Article and Find Full Text PDF