4 results match your criteria: "National Center of Applied Electromagnetism[Affiliation]"

Plants are phytochemical hubs containing antioxidants, essential for normal plant functioning and adaptation to environmental cues and delivering beneficial properties for human health. Therefore, knowledge on the antioxidant potential of different plant species and their nutraceutical and pharmaceutical properties is of utmost importance. Exploring this scientific research field provides fundamental clues on (1) plant stress responses and their adaptive evolution to harsh environmental conditions and (2) (new) natural antioxidants with a functional versatility to prevent and treat human pathologies.

View Article and Find Full Text PDF

Background: Unperturbed tumor growth kinetics is one of the more studied cancer topics; however, it is poorly understood. Mathematical modeling is a useful tool to elucidate new mechanisms involved in tumor growth kinetics, which can be relevant to understand cancer genesis and select the most suitable treatment.

Methods: The classical Kolmogorov-Johnson-Mehl-Avrami as well as the modified Kolmogorov-Johnson-Mehl-Avrami models to describe unperturbed fibrosarcoma Sa-37 tumor growth are used and compared with the Gompertz modified and Logistic models.

View Article and Find Full Text PDF

The influence of extremely low frequency electromagnetic fields on net photosynthesis, transpiration, photosynthetic pigment concentration, and gene expression of ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit (RBCS1), during in vitro establishment, in vitro multiplication and acclimatization phases of coffee seedlings were investigated. Untreated coffee plants were considered as control, whereas treated plants were exposed to a 60 Hz sinusoidal magnetic field of 2 mT of magnetic induction during 3 min. This magnetic field was generated by an electromagnet, connected to a wave generator.

View Article and Find Full Text PDF

Irrigation of Solanum lycopersicum L. with magnetically treated water increases antioxidant properties of its tomato fruits.

Electromagn Biol Med

September 2013

National Center of Applied Electromagnetism, University of Orient Ave, The Americas s/n, Santiago of Cuba City, Cuba.

Antioxidant effects of tomatoes (Solanum lycopersicum L.) have been studied and an association between dietary intake of tomatoes and lowered risk of cancer, neurodegenerative, and cardiovascular diseases has been suggested. Here we used magnetically treated water (MTW; 0.

View Article and Find Full Text PDF