64 results match your criteria: "National Center for Atmospheric Research NCAR[Affiliation]"

Observational Constraints on the Oxidation of NOx in the Upper Troposphere.

J Phys Chem A

March 2016

Department of Meteorology, Pennsylvania State University , University Park, Pennsylvania 16802, United States.

NOx (NOx ≡ NO + NO2) regulates O3 and HOx (HOx ≡ OH + HO2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NOx at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NOx concentrations.

View Article and Find Full Text PDF

Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

Environ Sci Pollut Res Int

March 2016

Physics Department, Dev Singh Bisht Campus, Kumaun University, Nainital, India.

The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia.

View Article and Find Full Text PDF

This paper presents a modeling comparison on how stabilization of global climate change at about 2 °C above the pre-industrial level could affect economic and energy systems development in China and India. Seven General Equilibrium (CGE) and energy system models on either the global or national scale are soft-linked and harmonized with respect to population and economic assumptions. We simulate a climate regime, based on long-term convergence of per capita carbon dioxide (CO) emissions, starting from the emission pledges presented in the Copenhagen Accord to the United Nations Framework Convention on Climate Change and allowing full emissions trading between countries.

View Article and Find Full Text PDF

The hydroxyl radical (OH) is a key oxidant involved in the removal of air pollutants and greenhouse gases from the atmosphere. The ratio of Northern Hemispheric to Southern Hemispheric (NH/SH) OH concentration is important for our understanding of emission estimates of atmospheric species such as nitrogen oxides and methane. It remains poorly constrained, however, with a range of estimates from 0.

View Article and Find Full Text PDF

Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds.

View Article and Find Full Text PDF

*Several studies have reported in situ methane (CH(4)) emissions from vegetation foliage, but there remains considerable debate about its significance as a global source. Here, we report a study that evaluates the role of ultraviolet (UV) radiation-driven CH(4) emissions from foliar pectin as a global CH(4) source. *We combine a relationship for spectrally weighted CH(4) production from pectin with a global UV irradiation climatology model, satellite-derived leaf area index (LAI) and air temperature data to estimate the potential global CH(4) emissions from vegetation foliage.

View Article and Find Full Text PDF

Penumbral structure and outflows in simulated sunspots.

Science

July 2009

High Altitude Observatory, National Center for Atmospheric Research (NCAR), Post Office Box 3000, Boulder, CO 80307, USA.

Sunspots are concentrations of magnetic field on the visible solar surface that strongly affect the convective energy transport in their interior and surroundings. The filamentary outer regions (penumbrae) of sunspots show systematic radial outward flows along channels of nearly horizontal magnetic field. These flows were discovered 100 years ago and are present in all fully developed sunspots.

View Article and Find Full Text PDF

The large burden of sulfate aerosols injected into the stratosphere by the eruption of Mount Pinatubo in 1991 cooled Earth and enhanced the destruction of polar ozone in the subsequent few years. The continuous injection of sulfur into the stratosphere has been suggested as a "geoengineering" scheme to counteract global warming. We use an empirical relationship between ozone depletion and chlorine activation to estimate how this approach might influence polar ozone.

View Article and Find Full Text PDF

Alfven waves in the solar corona.

Science

August 2007

High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR), Post Office Box 3000, Boulder, CO 80307-3000, USA.

Alfvén waves, transverse incompressible magnetic oscillations, have been proposed as a possible mechanism to heat the Sun's corona to millions of degrees by transporting convective energy from the photosphere into the diffuse corona. We report the detection of Alfvén waves in intensity, line-of-sight velocity, and linear polarization images of the solar corona taken using the FeXIII 1074.7-nanometer coronal emission line with the Coronal Multi-Channel Polarimeter (CoMP) instrument at the National Solar Observatory, New Mexico.

View Article and Find Full Text PDF

In the future, Arctic warming and the melting of polar glaciers will be considerable, but the magnitude of both is uncertain. We used a global climate model, a dynamic ice sheet model, and paleoclimatic data to evaluate Northern Hemisphere high-latitude warming and its impact on Arctic icefields during the Last Interglaciation. Our simulated climate matches paleoclimatic observations of past warming, and the combination of physically based climate and ice-sheet modeling with ice-core constraints indicate that the Greenland Ice Sheet and other circum-Arctic ice fields likely contributed 2.

View Article and Find Full Text PDF

A global coupled climate model shows that there is a distinct geographic pattern to future changes in heat waves. Model results for areas of Europe and North America, associated with the severe heat waves in Chicago in 1995 and Paris in 2003, show that future heat waves in these areas will become more intense, more frequent, and longer lasting in the second half of the 21st century. Observations and the model show that present-day heat waves over Europe and North America coincide with a specific atmospheric circulation pattern that is intensified by ongoing increases in greenhouse gases, indicating that it will produce more severe heat waves in those regions in the future.

View Article and Find Full Text PDF