74 results match your criteria: "National Center for Atmospheric Research Boulder CO USA.[Affiliation]"
Geophys Res Lett
January 2022
The Bradley Department of Electrical and Computer Engineering Virginia Tech Blacksburg VA USA.
The intrinsic temporal nature of magnetic reconnection at the magnetopause has been an active area of research. Both temporally steady and intermittent reconnection have been reported. We examine the steadiness of reconnection using space-ground conjunctions under quasi-steady solar wind driving.
View Article and Find Full Text PDFA new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM-chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM-chem-SE. Horizontal mesh refinement in CESM/CAM-chem-SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM-chem-SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0).
View Article and Find Full Text PDFSudden enhancement in high-frequency absorption is a well-known impact of solar flare-driven Short-Wave Fadeout (SWF). Less understood, is a perturbation of the radio wave frequency as it traverses the ionosphere in the early stages of SWF, also known as the Doppler flash. Investigations have suggested two possible sources that might contribute to it's manifestation: first, enhancements of plasma density in the D-and lower E-regions; second, the lowering of the F-region reflection point.
View Article and Find Full Text PDFWe examine characteristics of the seasonal variation of thermospheric composition using column number density ratio ∑ observed by the NASA Global Observations of Limb and Disk (GOLD) mission from low-mid to mid-high latitudes. We also use ∑ derived from the Global Ultraviolet Imager (GUVI) limb measurements onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and estimated by the NRLMSISE-00 empirical model to aid our investigation. We found that the seasonal variation is hemispherically asymmetric: in the southern hemisphere, it exhibits the well-known annual and semiannual pattern, with highs near the equinoxes, and primary and secondary lows near the solstices.
View Article and Find Full Text PDFFollowing the 2022 Tonga Volcano eruption, dramatic suppression and deformation of the equatorial ionization anomaly (EIA) crests occurred in the American sector ∼14,000 km away from the epicenter. The EIA crests variations and associated ionosphere-thermosphere disturbances were investigated using Global Navigation Satellite System total electron content data, Global-scale Observations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind data, and ionosonde observations. The main results are as follows: (a) Following the eastward passage of expected eruption-induced atmospheric disturbances, daytime EIA crests, especially the southern one, showed severe suppression of more than 10 TEC Unit and collapsed equatorward over 10° latitudes, forming a single band of enhanced density near the geomagnetic equator around 14-17 UT, (b) Evening EIA crests experienced a drastic deformation around 22 UT, forming a unique X-pattern in a limited longitudinal area between 20 and 40°W.
View Article and Find Full Text PDFFor southward interplanetary magnetic field (IMF) during local summer, the hemispherically integrated Poynting flux estimated by FAST-satellite-derived empirical models is significantly larger for the northern hemisphere (NH) than for the southern hemisphere (SH). In order to test whether the difference is statistically significant, the model uncertainties have been estimated by dividing the data sets for each hemisphere into two nonintersecting sets, and separately constructing the model using each of the four sets. The model uncertainty appears to be smaller than the estimated asymmetry.
View Article and Find Full Text PDFThis study employs a fully coupled meteorology-chemistry-snow model to investigate the impacts of light-absorbing particles (LAPs) on snow darkening in the Sierra Nevada. After comprehensive evaluation with spatially and temporally complete satellite retrievals, the model shows that LAPs in snow reduce snow albedo by 0.013 (0-0.
View Article and Find Full Text PDFJ Geophys Res Atmos
March 2022
Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA.
The Atmospheric River (AR) Tracking Method Intercomparison Project (ARTMIP) is a community effort to systematically assess how the uncertainties from AR detectors (ARDTs) impact our scientific understanding of ARs. This study describes the ARTMIP Tier 2 experimental design and initial results using the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 multi-model ensembles. We show that AR statistics from a given ARDT in CMIP5/6 historical simulations compare remarkably well with the MERRA-2 reanalysis.
View Article and Find Full Text PDFA particular strength of lightning remote sensing is the variety of lightning types observed, each with a unique occurrence context and characteristically different emission. Distinct energetic intracloud (EIC) lightning discharges-compact intracloud lightning discharges (CIDs) and energetic intracloud pulses (EIPs)-produce intense RF radiation, suggesting large currents inside the cloud, and they also have different production mechanisms and occurrence contexts. A Low-Frequency (LF) lightning remote sensing instrument array was deployed during the RELAMPAGO field campaign in west central Argentina, designed to investigate convective storms that produce high-impact weather.
View Article and Find Full Text PDFAs droughts have widespread social and ecological impacts, it is critical to develop long-term adaptation and mitigation strategies to reduce drought vulnerability. Climate models are important in quantifying drought changes. Here, we assess the ability of 285 CMIP6 historical simulations, from 17 models, to reproduce drought duration and severity in three observational data sets using the Standardized Precipitation Index (SPI).
View Article and Find Full Text PDFThe lightning data products generated by the low-frequency (LF) radio lightning locating system (LLS) deployed during the Remote sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observation (RELAMPAGO) field campaign in Argentina provide a valuable data set to research the lightning evolution and characteristics of convective storms that produce high-impact weather. LF LLS data sets offer a practical range for mesoscale studies, allowing for the observation of lightning characteristics of storms such as mesoscale convective systems or large convective lines that travel longer distances which are not necessarily staying in range of regional VHF-based lightning detection systems throughout their lifetime. LF LLSs also provide different information than optical space-borne lightning detectors.
View Article and Find Full Text PDFJ Geophys Res Space Phys
June 2021
Los Alamos National Laboratory Los Alamos NM USA.
The role a geospace plume in influencing the efficiency of magnetopause reconnection is an open question with two contrasting theories being debated. A local-control theory suggests that a plume decreases both local and global reconnection rates, whereas a global-control theory argues that the global reconnection rate is controlled by the solar wind rather than local physics. Observationally, limited numbers of point measurements from spacecraft cannot reveal whether a local change affects the global reconnection.
View Article and Find Full Text PDFThe Western United States is dominated by natural lands that play a critical role for carbon balance, water quality, and timber reserves. This region is also particularly vulnerable to forest mortality from drought, insect attack, and wildfires, thus requiring constant monitoring to assess ecosystem health. Carbon monitoring techniques are challenged by the complex mountainous terrain, thus there is an opportunity for data assimilation systems that combine land surface models and satellite-derived observations to provide improved carbon monitoring.
View Article and Find Full Text PDFEarth system/ice-sheet coupling is an area of recent, major Earth System Model (ESM) development. This work occurs at the intersection of glaciology and climate science and is motivated by a need for robust projections of sea-level rise. The Community Ice Sheet Model version 2 (CISM2) is the newest component model of the Community Earth System Model version 2 (CESM2).
View Article and Find Full Text PDFThe energetic particle precipitation (EPP) indirect effect (IE) refers to the downward transport of reactive odd nitrogen (NO = NO + NO) produced by EPP (EPP-NO) from the polar winter mesosphere and lower thermosphere to the stratosphere where it can destroy ozone. Previous studies of the EPP IE examined NO descent averaged over the polar region, but the work presented here considers longitudinal variations. We report that the January 2009 split Arctic vortex in the stratosphere left an imprint on the distribution of NO near the mesopause, and that the magnitude of EPP-NO descent in the upper mesosphere depends strongly on the planetary wave (PW) phase.
View Article and Find Full Text PDFJ Adv Model Earth Syst
April 2021
Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA.
An advanced aerosol treatment, with a focus on semivolatile nitrate formation, is introduced into the Community Atmosphere Model version 5 with interactive chemistry (CAM5-chem) by coupling the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) with the 7-mode Modal Aerosol Module (MAM7). An important feature of MOSAIC is dynamic partitioning of all condensable gases to the different fine and coarse mode aerosols, as governed by mode-resolved thermodynamics and heterogeneous chemical reactions. Applied in the free-running mode from 1995 to 2005 with prescribed historical climatological conditions, the model simulates global distributions of sulfate, nitrate, and ammonium in good agreement with observations and previous studies.
View Article and Find Full Text PDFExposure to ambient PM pollution has been linked to multiple adverse health effects. Additional effects have been identified in the literature and there is a need to understand its potential role in high prevalence diseases. In response to recent indications of PM as a risk factor for dementia, we examine the evidence by systematically reviewing the epidemiologic literature, in relation to exposure from ambient air pollution, household air pollution, secondhand smoke, and active smoking.
View Article and Find Full Text PDFEarth system models are valuable tools for understanding how the Arctic snow-ice system and the feedbacks therein may respond to a warming climate. In this analysis, we investigate snow on Arctic sea ice to better understand how snow conditions may change under different forcing scenarios. First, we use in situ, airborne, and satellite observations to assess the realism of the Community Earth System Model (CESM) in simulating snow on Arctic sea ice.
View Article and Find Full Text PDFGeophys Res Lett
March 2021
Throughout spring and summer 2020, ozone stations in the northern extratropics recorded unusually low ozone in the free troposphere. From April to August, and from 1 to 8 kilometers altitude, ozone was on average 7% (≈4 nmol/mol) below the 2000-2020 climatological mean. Such low ozone, over several months, and at so many stations, has not been observed in any previous year since at least 2000.
View Article and Find Full Text PDFThe atmospheric electric field is an important research parameter in understanding storm electrification and energy exchange between lightning and the atmosphere across the globe. The near-surface electric field can range from a few V/m (order of 10-100 V/m), mainly produced by the currents in the global electric circuit and local charge perturbations, to tens of kV/m in the presence of electrified clouds. The electric field mill (EFM), a variable capacitance electrometer, has been the instrument of choice in the atmospheric electricity community studying phenomena associated with the atmospheric electric field.
View Article and Find Full Text PDFVariability in climate exerts a strong influence on vegetation productivity (gross primary productivity; GPP), and therefore has a large impact on the land carbon sink. However, no direct observations of global GPP exist, and estimates rely on models that are constrained by observations at various spatial and temporal scales. Here, we assess the consistency in GPP from global products which extend for more than three decades; two observation-based approaches, the upscaling of FLUXNET site observations (FLUXCOM) and a remote sensing derived light use efficiency model (RS-LUE), and from a suite of terrestrial biosphere models (TRENDYv6).
View Article and Find Full Text PDFA total solar eclipse occurred in the Southern Hemisphere on 2 July 2019 from approximately 17 to 22 UT. Its effect in the thermosphere over South America was imaged from geostationary orbit by NASA's Global-scale Observation of Limb and Disk (GOLD) instrument. GOLD observed a large brightness reduction (>80% around totality) in OI 135.
View Article and Find Full Text PDFThe thermal component of oceanic eddy available potential energy (EPE) generation due to air-sea interaction is proportional to the product of anomalous sea surface temperature (SST) and net air-sea heat flux (SHF). In this study we assess EPE generation and its timescale and space-scale dependence from observations and a high-resolution coupled climate model. A dichotomy exists in the literature with respect to the sign of this term, that is, whether it is a source or a sink of EPE.
View Article and Find Full Text PDFThe Komodo dragon () is an endangered, island-endemic species with a naturally restricted distribution. Despite this, no previous studies have attempted to predict the effects of climate change on this iconic species. We used extensive Komodo dragon monitoring data, climate, and sea-level change projections to build spatially explicit demographic models for the Komodo dragon.
View Article and Find Full Text PDF