27,715 results match your criteria: "Nanyang Technological University; Ng_Lai_Guan@immunol.a-star.edu.sg.[Affiliation]"

The corrugated <110> oriented layered metal halide perovskites (MHP) are gaining increased attention for a variety of properties including intrinsic white light emission. One prototypical candidate is 1-(3-aminopropyl)imidazole lead bromide, which was reported to crystallize as the <110> oriented perovskite (API)PbBr [API = 1-(3-aminopropyl)imidazole]. This work shows that under similar reaction conditions, the same components can instead form (API)PbBr, which has a "perovskitoid" structure.

View Article and Find Full Text PDF

Condensation is a vital process integral to numerous industrial applications. Enhancing condensation efficiency through dropwise condensation on hydrophobic surfaces is well-documented. However, no surfaces have been able to repel liquids with extremely low surface tension, such as fluorinated solvents, during condensation, as they nucleate and completely wet even the most hydrophobic interfaces.

View Article and Find Full Text PDF

Southeast Asia (SEA) contributes approximately one-third of global land-use change carbon emissions, a substantial yet highly uncertain part of which is from anthropogenically-modified peat swamp forests (PSFs) and mangroves. Here, we report that between 2001-2022 land-use change impacting PSFs and mangroves in SEA generate approximately 691.8±97.

View Article and Find Full Text PDF

Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.

View Article and Find Full Text PDF

Finite element modeling of clavicle fracture fixations: a systematic scoping review.

Med Biol Eng Comput

January 2025

Department of Orthopaedics, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.

Finite element analysis has become indispensable for biomechanical research on clavicle fractures. This review summarized evidence regarding configurations and applications of finite element analysis in clavicle fracture fixation. Seventeen articles involving 22 clavicles were synthesized from CINAHL, Embase, IEEE Xplore, PubMed, Scopus, and Web of Science databases.

View Article and Find Full Text PDF

Cognitive variation reflects amyloid, tau, and neurodegenerative biomarkers in Alzheimer's disease.

Geroscience

January 2025

Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.

In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes.

View Article and Find Full Text PDF

Dual-Source Evaporation Processed Novel NaBiS Absorber Material for Eco-Friendly and Stable Photovoltaics.

Small

January 2025

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

Exploring and developing novel, low-cost, and environmentally friendly photovoltaic materials is a vital trend in the evolution of solar cell technology. The distinctive properties of alkali bismuth ternary sulfides have spurred increased research and application in optoelectronic devices. In this study, a novel method is reported for preparing NaBiS film by sequential thermal evaporation of NaS and BiS layers followed by heating post-treatment for the first time, as well as the preparation of solar cells with NaBiS as the light-absorbing layer.

View Article and Find Full Text PDF

Transforming Adsorbate Surface Dynamics in Aqueous Electrocatalysis: Pathways to Unconstrained Performance.

Adv Mater

January 2025

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.

Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability.

View Article and Find Full Text PDF

Harnessing from Nature - Evolving Potential of Antimicrobial Peptide.

Chembiochem

January 2025

Nanyang Technological University, School of Chemistry, Chemical Engineering & Biotechnology, 21 Nanyang Link, 637371, Singapore, SINGAPORE.

Antimicrobial peptides (AMPs) are recognized as one of the most ancient components of innate immunity, playing a pivotal role as the first line of host defense systems. These evolutionarily conserved molecules have been identified in various organisms, from prokaryotes to humans. AMPs establish a delicate balanced relationship between host and microbes, by simultaneously regulating the biological activities of pathogens and commensal microbes.

View Article and Find Full Text PDF

Anion-Modulated Solvation Sheath and Electric Double Layer Enabling Lithium-Ion Storage From -60 to 80 °C.

J Am Chem Soc

January 2025

Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Current lithium batteries experience significant performance degradation under extreme temperature conditions, both high and low. Traditional wide-temperature electrolyte designs typically addressed these challenges by manipulating the solvation sheath and selecting solvents with extreme melting/boiling points. However, these solvent-mediated solutions, while effective at one temperature extreme, invariably fail at the opposite end due to the inherent difficulties in maintaining solvent stability across wide temperatures.

View Article and Find Full Text PDF

Designing safe and reliable routes is the core of intelligent shipping. However, existing methods for industrial use are inadequate, primarily due to the lack of considering company preferences and ship maneuvering characteristics. To address these challenges, here we introduce a methodological framework that integrates maritime knowledge and autonomous maneuvering model.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

Nanopore sequencing to detect A-to-I editing sites.

Methods Enzymol

January 2025

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore. Electronic address:

Adenosine-to-inosine (A-to-I) RNA editing, mediated by the ADAR family of enzymes, is pervasive in metazoans and functions as an important mechanism to diversify the proteome and control gene expression. Over the years, there have been multiple efforts to comprehensively map the editing landscape in different organisms and in different disease states. As inosine (I) is recognized largely as guanosine (G) by cellular machineries including the reverse transcriptase, editing sites can be detected as A-to-G changes during sequencing of complementary DNA (cDNA).

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) particle assembly occurs on the surface of infected cells at specialized membrane domain called lipid rafts. The mature RSV particles assemble as filamentous projections called virus filaments, and these structures form on the surface of many permissive cell types indicating that this is a robust feature of the RSV particle assembly. The virus filaments also form on nasal airway organoids systems providing evidence that these structures also have a clinical relevance.

View Article and Find Full Text PDF

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Binding Kinetics, Bias, Receptor Internalization and Effects on Insulin Secretion and of a Novel GLP-1R/GIPR Dual Agonist, HISHS-2001.

bioRxiv

January 2025

Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom.

The use of incretin analogues has emerged in recent years as an effective approach to achieve both enhanced insulin secretion and weight loss in type 2 diabetes (T2D) patients. Agonists which bind and stimulate multiple receptors have shown particular promise. However, off target effects, including nausea and diarrhoea, remain a complication of using these agents, and modified versions with optimized pharmacological profiles and/or biased signaling at the cognate receptors are increasingly sought.

View Article and Find Full Text PDF

Background And Aims: Neuro-ischemic ulcers (NIU) present a substantial clinical and economic burden on the healthcare systems. This study aims to evaluate their healing rate, associated healthcare resource utilization, and prognostic factors influencing healing.

Methods: Consecutive patients attended specialist clinics or admitted to wards in three tertiary hospitals for new or existing NIUs from November 2019 to November 2021 were eligible for this study.

View Article and Find Full Text PDF

[This corrects the article DOI: 10.1039/C9RA10485B.].

View Article and Find Full Text PDF

Objectives: Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of infants, predominantly in female and preterm neonates. Propranolol is the mainstay of treatment for IH. Given the short half-life of propranolol regarding β-adrenergic receptor inhibition as well as its side effects, propranolol is administered to infants 2-3 times daily with 1 mg/kg/dose.

View Article and Find Full Text PDF

Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.

View Article and Find Full Text PDF

Polymeric room temperature phosphorescence (RTP) materials have been well developed and utilized in various fields. However, their fast thermo- and moisture-quenching behavior highly limit their applications in certain harsh environments. Therefore, the preparation of materials with thermo- and moisture-resistant phosphorescence is greatly attractive.

View Article and Find Full Text PDF

Creative designs, precise fluidic manipulation, and automation have supported the development of microfluidics for single-cell applications. Together with the advancements in detection technologies and artificial intelligence (AI), microfluidic-assisted platforms have been increasingly used for new modalities of single-cell investigations and in spatial omics applications. This review explores the use of microfluidic technologies for morpholomics and spatial omics with a focus on single-cell and tissue characterization.

View Article and Find Full Text PDF

Proteolysis-Targeting Chimeras (PROTAC) are a bifunctional molecule that binds to a protein of interest (POI) and a ubiquitin ligase, thereby inducing the ubiquitination and degradation of POI. Many PROTACs currently utilize a limited number of ubiquitin ligases, such as von Hippel-Lindau (VHL) and Cereblon. Because these ubiquitin ligases are widely expressed in normal tissues, unexpected side effects can occur.

View Article and Find Full Text PDF

Association of dysfunctional adiposity index with kidney impairment is accounted for by pigment epithelium-derived factor in type 2 diabetes mellitus - An 11-year follow-up of the SMART2D cohort study.

J Diabetes Complications

January 2025

Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore; Saw Swee Hock School of Public Health, National University Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore. Electronic address:

Aims: This novel longitudinal study investigated the association of the new dysfunctional adiposity index (DAI) with kidney impairment in multi-ethnic Asians with type 2 diabetes mellitus (T2DM), and the mediation effect of pigment epithelium-derived factor (PEDF).

Methods: T2DM adults followed for up to 10.5 years were analyzed (n = 1611).

View Article and Find Full Text PDF