Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionmnv62dfenh4ll2ph1613mm4pga275gon): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
5 results match your criteria: "Nanoworld Institute Fondazione ELBA Nicolini[Affiliation]"
Crit Rev Eukaryot Gene Expr
June 2015
Nanoworld Institute Fondazione ELBA Nicolini, Pradalunga, Bergamo 24100, Italy; Biophysics and Nanobiotechnology Laboratories, Department of Experimental Medicine, University of Genova, Genoa 16121-16167, Italy; European Synchrotron Radiation Facility.
Crystallization is a highly demanding and time-consuming task that causes a real bottle-neck in basic research. Great effort has been made to understand the factors and parameters that influence this process and to finely tune them to facilitate crystal growth. Different crystallization techniques have been proposed over the past decades, such as the classical vapor hanging drop method, its variant the sitting drop method, dialysis, cryo-temperature, gel, batch, and the innovative microgravity (space) techniques like free interface diffusion (FID) and counter-ion diffusion (CID).
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
June 2015
Nanoworld Institute Fondazione ELBA Nicolini, Pradalunga, Bergamo 24100, Italy; Biophysics and Nanobiotechnology Laboratories, Department of Experimental Medicine, University of Genova, Genoa 16121-16167, Italy; European Synchrotron Radiation Facility.
A full-atom structure of a protein provides an important piece of information for molecular biologists, but has to be complemented by further knowledge concerning its conformational mobility and functional properties. Some scholars have proposed to integrate proteomics-derived data (mainly obtained with techniques like X-ray and NMR crystallography) with protein bioinformatics and computational approaches, above all molecular dynamics (MD), in order to gain better elucidations about proteins. MD simulations have been applied to different areas of protein sciences, but so far few efforts have been made to couple MD with an understanding of the different crystallization techniques that have been proposed during the decades, like classical vapor diffusion hanging drop and its variants (such as sitting drop), in space- and LB (Langmuir-Blodgett)-based crystallization procedures.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
April 2018
Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy; Biodesign Institute, Arizona State University, Tempe, Arizona, USA. Electronic address:
In order to overcome the difficulties and hurdles too much often encountered in crystallizing a protein with the conventional techniques, our group has introduced the innovative Langmuir-Blodgett (LB)-based crystallization, as a major advance in the field of both structural and functional proteomics, thus pioneering the emerging field of the so-called nanocrystallography or nanobiocrystallography. This approach uniquely combines protein crystallography and nanotechnologies within an integrated, coherent framework that allows one to obtain highly stable protein crystals and to fully characterize them at a nano- and subnanoscale. A variety of experimental techniques and theoretical/semi-theoretical approaches, ranging from atomic force microscopy, circular dichroism, Raman spectroscopy and other spectroscopic methods, microbeam grazing-incidence small-angle X-ray scattering to in silico simulations, bioinformatics, and molecular dynamics, has been exploited in order to study the LB-films and to investigate the kinetics and the main features of LB-grown crystals.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
April 2018
Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy; Biodesign Institute, Arizona State University, Tempe, Arizona, USA. Electronic address:
Design and implementation of new biocompatible materials and achievements in the field of nanogenomics and nanoproteomics as well as in other related and allied sciences in the broader framework of translational and clinical nanomedicine are paving new avenues for nanodentistry. Classical dentistry is becoming more predictive, preventive, personalized, and participatory, providing the patients with a tailored and targeted treatment and handling of their diseases. Considering the global impact of the oral pathologies, being particularly heavy in underdeveloped and developing countries, it is mandatory from an ethical perspective to ensure a global oral health.
View Article and Find Full Text PDFMaterials (Basel)
August 2011
Nanoworld Institute Fondazione ELBA Nicolini, Bergamo 24100, Italy.
Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.
View Article and Find Full Text PDF