53,542 results match your criteria: "Nanomedicine & Toxicology Laboratory Bowen University[Affiliation]"
Mater Today Bio
February 2025
Research Center of Nanomedicine Technology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, PR China.
Nanozymes with specific catalytic activity inhibit inflammation and promote wound healing efficiently and safely. In this work, multifunctional manganese-based nanozymes (MnGA) with antioxidant properties were successfully constructed via a simple coordination reaction in which manganese chloride was used as the manganese source and gallic acid (GA) was used as the ligand solution. MnGA possesses both catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities and a reactive nitrogen species (RNS) scavenging capacity, which enables it to efficiently inhibit the inflammatory response.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland.
Introduction: This article describes the invention of graphene oxide (GO) or reduced graphene oxide (rGO) functionalised with 2-methoxy estradiol. The presence of polar hydroxyl groups enables the binding of 2-ME to GO/rGO through hydrogen bonds with epoxy and hydroxyl groups located on the surface and carbonyl and carboxyl groups located at the edges of graphene flake sheets.
Methods: The patented method of producing the subject of the invention and the research results regarding its anticancer effectiveness via cytotoxicity in an in vivo model (against A375 melanoma and 143B osteosarcoma cells) are described.
J Nanobiotechnology
January 2025
Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
The acidic tumor microenvironment, a hallmark of many solid tumors, is primarily induced by the high glycolytic rate of tumor cells. To avoid acidosis, tumor cells ingeniously maintain an acidic extracellular pH while keeping a relatively alkaline intracellular pH. Overturning the unique pH gradient of tumor cells has exhibited to be a viable approach for cancer therapy.
View Article and Find Full Text PDFCrit Care
January 2025
Intensive Care Unit, Department of Acute Medicine, University Hospital Basel, Petersgraben 5, 4031, Basel, Switzerland.
Background: Conflicting data exist regarding sex-specific outcomes after cardiac arrest. This study investigates sex disparities in the provision of critical care and outcomes of in-hospital (IHCA) and out-of-hospital cardiac arrest (OHCA) patients.
Methods: Analysis of adult cardiac arrest patients admitted to certified Swiss intensive care units (ICUs) (01/2008-12/2022) using the nationwide prospective ICU registry.
ACS Appl Mater Interfaces
January 2025
Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China.
Spontaneous intracerebral hemorrhagic stroke (ICH) is a highly aggressive disease, with a high incidence and mortality rate. Iron deposition following ICH leads to oxidative damage and motor dysfunction, significantly impacting the overall quality of life for those affected. Here, a polyphenolic nanomedicine, catechin-based polyphenol nanoparticles surface-modified by thiol-terminated poly(ethylene glycol) (CNPs@PEG), was developed through the oxidative polymerization and self-assembly of catechin, a natural compound in tea.
View Article and Find Full Text PDFACS Nano
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia.
Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections.
View Article and Find Full Text PDFJ Control Release
January 2025
Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel. Electronic address:
In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I present a personal perspective on the complexities of cancer nanomedicine and the approaches to master them. This oration draws mainly from my lab's journey to explore three transformative approaches to master complexities in the field: (1) leveraging text mining to construct dynamic knowledge bases for hypothesis generation in cell-specific drug delivery, (2) introducing the concept of meta-synergy to further optimize and classify multi-drug combinations across dimensions such as chemical loading, pharmacodynamics, and pharmacokinetics (3) utilizing automation to accelerate nanoparticle discovery with advanced screening methodologies such as aggregation-induced emission (AIE). I argue that by embracing complexity in nanomedicine, we can manifest new therapeutic possibilities, paving the way for more effective, precise, and adaptive treatment strategies.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China. Electronic address:
Platinum(II)-based antitumor drugs are widely used in clinics but limited by severe side effects and resistance. Multi-target Platinum(IV) complexes are emerging as ideal alternatives. Heme oxygenase-1 (HO-1) works as a rate-limiting step in heme degradation and is overexpressed in malignant tumors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:
Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.
View Article and Find Full Text PDFJ Crit Care
January 2025
Hospital Saint-Louis et Université Paris Cité, Assistance Publique-Hôpitaux de Paris, France. Electronic address:
Purpose: Onco-hematological (OH) patients face significant cardiovascular risks due to malignancy and drug toxicity. Data are limited on the characteristics and outcomes of OH patients with cardiogenic shock (CS) in intensive care units (ICUs).
Methods: This multicenter retrospective study included 214 OH patients with CS across 22 ICUs (2010-2021).
Adv Healthc Mater
January 2025
Department of Biological Sciences, KAIST Institute for the BioCentury, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
Skin represents an effective barrier against the penetration of external agents into the human body. Nevertheless, recent research has shown that small particles, especially in the nanosized range, can not only penetrate through the skin but also work as vectors to transport active molecules such as contrast agents or drugs. This knowledge has opened new perspectives on nanomedicine and controlled drug delivery.
View Article and Find Full Text PDFSmall
January 2025
Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
A 3D DNA spatial chip (DSC) based on an icosahedral DNA origami framework is introduced to construct customized circular single-stranded DNA (c-ssDNA) for data storage. Within the confined space of the DSC, thirty addressable location sequences extending from the framework edges are available for designing circular paths and directing the assembly of a series of information oligonucleotides for efficient ligation. This strategy is verified by constructing c-ssDNAs from up to 15 fragments to encode two poems (800 and 860 nucleotides).
View Article and Find Full Text PDFJCI Insight
January 2025
Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.
Diabetes mellitus can cause impaired and delayed wound healing, leading to lower extremity amputations; however, the mechanisms underlying the regulation of vascular endothelial growth factor-dependent (VEGF-dependent) angiogenesis remain unclear. In our study, the molecular underpinnings of endothelial dysfunction in diabetes are investigated, focusing on the roles of disabled-2 (Dab2) and Forkhead box M1 (FOXM1) in VEGF receptor 2 (VEGFR2) signaling and endothelial cell function. Bulk RNA-sequencing analysis identified significant downregulation of Dab2 in high-glucose-treated primary mouse skin endothelial cells.
View Article and Find Full Text PDFHistol Histopathol
January 2025
Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.
The use of tissues of porcine origin has gained significant momentum in the scientific community due to their anatomical and physiological resemblance to human tissues. This review provides a comprehensive overview of the key biological features of porcine ocular structures, including the cornea, conjunctiva, and associated tissues, in comparison to their human counterparts. Additionally, this review outlined the ex vivo applications of these tissues in the study of different biological processes and the simulation of pathological conditions.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Department of Ultrasound, Yantaishan Hospital, Binzhou Medical University, Yantai, Shandong, China.
With the rapid development of nanotechnology, nanoultrasonography has emerged as a promising medical imaging technique that demonstrates significant potential in the diagnosis and treatment of gastrointestinal (GI) diseases. This review discusses the applications of nanoultrasonography in the gastrointestinal field, including improvements in imaging resolution, diagnostic accuracy, latest research findings, and prospects for clinical application. By analyzing existing literature, we explore the role of nanoultrasonography in enhancing imaging resolution, enabling targeted drug delivery, and improving therapeutic outcomes, thereby providing a reference for future research directions.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.
Background: The application of nanomedicine in inflammatory bowel disease (IBD) has gained significant attention in the recent years. As the field rapidly evolves, analyzing research trends and identifying research hotpots are essential for guiding future advancements, and a comprehensive bibliometric can provide valuable insights.
Methods: The current research focused on publications from 2001 to 2024, and was sourced from the Web of Science Core Collection (WoSCC).
Int J Nanomedicine
January 2025
Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Yantai Engineering Research Center for Digital Technology of Stomatology, Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Institute of Stomatology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
The metabolic activity of tumor cells leads to the acidification of the surrounding microenvironment, which provides new strategies for the application of nanotechnology in cancer therapy. Researchers have developed various types of pH-responsive nanomaterials based on the tumor acidic microenvironment. This review provides an in-depth discussion on the design mechanisms, drug-loading strategies, and application pathways of tumor acidic microenvironment-responsive nanodrug delivery systems.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.
Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.
Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).
Front Bioeng Biotechnol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.
Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China.
Cancer is a major killer threatening modern human health and a leading cause of death worldwide. Due to the heterogeneity and complexity of cancer, traditional treatments have limited effectiveness. To address this problem, an increasing number of researchers and medical professionals are working to develop new ways to treat cancer.
View Article and Find Full Text PDF